OMRON

Machine Automation Controller NJ-series

General Ethernet (TCP/IP) Connection Guide

OMRON Corporation

Industrial Handheld DPM Reader
V460-H-series

Network

Connection

Guide

Z481-E1-01

About Copyrights and Trademarks

Microsoft product screen shots used with permission from Microsoft.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in
Japan and other countries for OMRON factory automation products.

Company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

Contents

1. Related Manuals............cccoecmmmemmiirncccceecrr s sms e e e s nmnes 1
2. Terms and Definitions.........cccucviiiiiciinnnninc e 2
3. Restrictions and Precautions...........ccccccciiiiiimninsimn s 3
S © 1V 1= 4
5. Applicable Products and Device Configuration..........ccccccceeeeemerrnrnnnnnees 5
5.1. Applicable Products.............ooooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 5
5.2. Device Configuration ..o 6
6. Ethernet Settings ... 8
6.1. Ethernet Communication Settings........cccccvvveieee e 8
6.2. Example of Connection Check for Communications........................... 9
7. Connection Procedure.........ccccccciriiriicscsssmmerssrnsssssssssseresessssssssssssssssssssnnes 10
71. Operation FIOWuueiiiiiieiieee e 10
7.2. Code Reader SEtUP......cooeeeiieeeeeeee e 11
7.3. Controller SetUP ... e 15
7.4. Checking the Connection Status........ccccoccoiiiiiiiiiiee, 20
8. Initializing the System ... 24
8.1. Initializing the Controller............oocceie i 24
8.2. Initializing the Code Readerooi i 24
9. ProJECt File... s 25
9.1. (@Y= T TS 25
9.2. Error Judgment ProCcessing.........ccuuuiieiiiiiiiiiiiiee e 29
9.3. Variables Used..........ccccoi i, 31
9.4, Programs (ST LangQuage)........ceeeviueereiiiieeeeeiieeeeesieeeeessieeeessnnneae s 36
9.5. TIMING Chartooo e 53
9.6. Error ProCesSINg.....ccoui i 59

10. RevVvision History ... sssssssssn s ssssssnes 63

1. Related Manuals

1. Related Manuals

To ensure system safety, make sure to always read and follow the information provided in all
Safety Precautions and Precautions for Safe Use in the manuals for each device which is

used in the system.
The following OMRON Corporation (hereinafter referred to as “OMRON”) manuals are related
to this document:

Cat. No. Model Manual name

W500 NJ Series NJ-series CPU Unit Hardware User’s Manual

W501 NJ/NX Series NJ/NX-series CPU Unit Software User’s Manual

W506 NJ/NX Series NJ/NX-series CPU Unit Built-in EtherNet/IP Port
User’s Manual

W504 SYSMAC-SE2010[Sysmac Studio Version 1 Operation Manual

w502 NJ/NX Series Machine Automation Controller Instructions
Reference Manual

Z461 V460-H Series V460-H Industrial Handheld DPM Reader
User Manual

2462 V460-H Series V460-H Industrial Handheld DPM Reader

Communication Manual

2. Terms and Definitions

2. Terms and Definitions

Term

Description/Definition

IP Address

Ethernet uses IP addresses to achieve communications.

Each IP address (specifically, Internet Protocol address) identifies a
specific node (host computer, controller, etc.) on an Ethernet network,
IP addresses must be set and managed so that they are not duplicated.

Socket

A socket is an interface that allows you to directly use TCP or UDP
functions from a user program.

The NJ Series Machine Automation Controller performs socket
communication using standard socket service instructions.

To use socket services, you need to establish a connection with a remote
node and disconnect it after use. In this document, processing for
establishing a connection is referred to as “socket open” or “TCP open”
and for disconnecting it as “socket close” or “close”.

You can use the socket services to send and receive arbitrary data to
and from the remote node.

Active and Passive

When you open a TCP socket connection with nodes, open processing is
executed for each node.

The method to open a connection differs depending on whether the node
is to serve as a client or server.

In this document, processing to open a connection as a server is referred
to as “passive open” and as a client is referred to as “active open” or
“active open processing”.

keep-alive Function

When a remote node (server or client) does not respond for a set period
of time or longer in TCP/IP socket services, the keep-alive function sends
a communications frame to the node to check the connection status.

If the node does not respond to it, the function performs this check at a
certain interval, and closes the connection if it does not respond to all
check frames.

linger function

This is a TCP socket option that sends RST data when the TCP socket is
closed. This enables immediate open processing using the same port
number, without waiting for the port to be opened.

If the linger option is not specified, the controller issues FIN data when
the TCP socket is closed and, after that, performs end control such as a
send data arrival check with the remote node for approximately 1 minute.
Therefore, TCP sockets with the same port number may not be used
immediately.

3. Restrictions and Precautions

3. Restrictions and Precautions

(1) Before building a system, understand the specifications of devices which are used in the
system. Allow some margin for ratings and performance, and provide safety measures
such as installing a safety circuit in order to minimize the risk in case of failure.

(2) To ensure system safety, make sure to read and follow the information provided in all
Safety Precautions and Precautions for Safe Use in the manuals for each device which is
used in the system.

(3) The user is encouraged to confirm the standards and regulations that the system must
conform to.

(4) ltis prohibited to copy, to reproduce, and to distribute a part or the whole of this document
without the permission of OMRON Corporation.

(5) The information contained in this document is current as of November 2023.

It is subject to change for improvement without notice.

The following notations are used in this document.

Indicates a potentially hazardous situation which, if not avoided,
may result in minor or moderate injury, or may result in serious
injury or death. Additionally, there may be severe property
damage.

/\\ WARNING

Caution Indicates a potentially hazardous situation which, if not avoided,
may result in minor or moderate injury, or property damage.

Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

I'El Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

@ Note

Additional information to read as required.
This information is provided to increase understanding or make operation easier.

Symbols

The filled circle symbol indicates operations that you must do.
The specific operation is shown in the circle and explained in text.
This example shows a general precaution for something that you
must do.

w

4. Overview

4. Overview

This document describes the procedures for connecting the OMRON Industrial Handheld
DPM Reader products (V460-H Series) to an NJ Series Machine Automation Controller
(hereinafter referred to as the controller) via Ethernet and for checking their connections.
You can establish an Ethernet communication connection by understanding the setting
procedures and key points of setup through the Ethernet communication settings in the
project file prepared in advance.

In this project file, the Ethernet connection is checked by sending a read trigger command to
the code reader and receiving the read data from it.

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
Name Filename Version
Sysmac Studio Compact OMRON_V460_NJ_ETN(TCP) | Ver. 1.00
Project File (Extension: csm2) | _V100.csm2

The purpose of this document is to describe the wiring methods, communication

settings, and setting procedures required to establish a connection for
communications with applicable devices. In addition, the program used in this
document is designed to check that the connection has been correctly
performed (connection check). Since the program is not intended for permanent

use on-site, full consideration is not given to functionality and performance.
When configuring an actual system, please refer to the wiring methods,
communication settings, and setting procedures described in this document to
design and create a program that meets your purpose.

5. Applicable Products and Device Configuration

5. Applicable Products and Device Configuration

I 5.1. Applicable Products
The applicable devices that are required to ensure a connection are as follows:

Manufacturer | Name Model Version
OMRON NJ Series CPU Unit NJ501-1500
NJ501-1400 Same or later
NJ501-1300 version as
indicated in
NJ301-0J0010 section 5.2.
OMRON Code reader V460-HOPX

@ Note

This document describes the procedures for establishing the communication connection of
the device, and does not describe the operation, installation and wiring method of the device.
For details on the above products (other than communication connection procedures), please
refer to the instruction manual for the product or contact OMRON.

@ Note

From among the above applicable devices, this document uses the devices listed in section
5.2 for the connection check. When using devices that are not described in section 5.2, check
the connection according to this document.

[El Precautions for Correct Use

The connection and connection check procedures described in this document use the
devices listed in section 5.2, from among the above applicable devices.

You cannot use devices with versions earlier than the versions listed in section 5.2.

To use models that are not listed in section 5.2. or versions that are later than those listed in
section 5.2., check the differences in the specifications according to their instruction manuals
before operating the devices.

5. Applicable Products and Device Configuration

I 5.2. Device Configuration

The system components required for reproducing the connection procedures described in this

document are as follows.

V460-HOPX
PC NJ301-1200 Switching
(Sysmac Studio (Built-in EtherNet/IP Port) hub
installed, OS: W481-05C r===—-- 1
Windows10) :
I
. USBcable | [|®B LANcable ==———- ' Ethernet cable
- LAN cable PoE hub V430-WE-3M
To— 24 \/DC power supply
Manufacturer Name Model Version
OMRON NJ Series CPU Unit NJ301-1200 Ver. 1.19
(Built-in EtherNet/IP Port)
OMRON Power Supply Unit NJ-PA3001 ---
OMRON Switching hub W4S1-05C -—-
OMRON Sysmac Studio SYSMAC-SE2011[] Ver. 1.44
OMRON Sysmac Studio Project File OMRON_V460 NJ ETN | Ver. 1.00
(TCP) V100.csm2
PC (OS: Windows 10)
USB cable
(USB 2.0-compliant B-type connector)
OMRON Ethernet cable V430-WE-3M ---
- LAN cable (Standard Ethernet cable) - -
OMRON Code reader V460-HOPX Ver. 1.0
- Single port PoE injector 98-9000311-01 -
- 24 VVDC power supply - -

5. Applicable Products and Device Configuration

I'El Precautions for Correct Use

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
(Contact OMRON for information on how to obtain this file.)

Note

The configuration may not be reproduced if the system component models or versions differ.
Check your configuration and, if there is any difference in the models or versions, contact
OMRON.

Note

This document assumes that the USB is used to connect the controller. For information on
how to install the USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection
in Appendices of the Sysmac Studio Version 1 Operation Manual (Cat. No. W504).

Note

Refer to the Industrial Switching Hub W4S1 Series User Manual (0969584-7) for power
supply specifications that can be used for 24 VDC power supply (for the switching hub).

6. Ethernet Settings

6. Ethernet Settings

This section shows the specifications of the communication parameter settings, variable
names and other information provided in this document.

@ Note

This document and the project file only cover the operations that you can perform using the
settings and commands described in this section. To use communication settings that are not
described here, you need to modify the project file.

I 6.1. Ethernet Communication Settings
The settings required to perform Ethernet communications are as follows.

6.1.1. Communications Settings for Setting PC and Code Reader
This document assumes that you use the settings below to set the code reader using a setting

PC.
Parameter name Setting PC Code reader
IP address 192.168.188.100 192.168.188.2 (default)
Subnet mask 255.255.0.0 255.255.0.0 (default)
Gateway Blank (default) 0.0.0.0 (default)

* For the use cases in this document, setting the gateway is unnecessary because the devices
are connected within the same segment of the network.

6.1.2. Communication Settings for Ethernet Unit and Code Reader
It is assumed that you use the settings below to connect the Ethernet Unit and the code

scanner.
Parameter name NJ301-1200 Code reader
(Built-in EtherNet/IP Port)
IP address 192.168.188.1 192.168.188.2 (default)
Subnet mask 255.255.0.0 255.255.0.0 (default)
Gateway - 0.0.0.0 (default)
Port number (set by software part) 2001 (default)

* For the use cases in this document, setting the gateway is unnecessary because the devices
are connected within the same segment of the network.

6. Ethernet Settings

I 6.2. Example of Connection Check for Communications

This document assumes that you use a program in structured text (hereinafter, ST) language
to execute “socket open”, “send and receive”, and “socket close” from the controller to the
code reader.

Press the trigger button on the code reader to read the code. The code reader sends the read
data to the controller.

An overview of the operation is shown below.

CPU EtherNet/IP port Ethernet Code reader
Project file
Socket communications
function

ST language program

l Socket open
>
< .

Local_ Press the trigger button on
SrcData the code reader to read
the code.
Reads code.
Local_ Read data
RecvData RERRE ™
Receive data | ¢ <
area .
Receives read data.

Socket close

7. Connection Procedure

7. Connection Procedure

This section describes the procedures for connecting the controller to an Ethernet network.

In this document, it is assumed that the controller and the code reader use the factory default

settings. For how to initialize the devices, refer to Section 8. Initializing the System.

I 7.1. Operation Flow

The procedures for connecting and setting up the controller via Ethernet are as follows.

“ 7.2. Code Reader Setup

v

7.2.1. Setting the Parameters

Y

7.3. Controller Setup

v

7.3.1. Starting the Sysmac Studio and
Loading the Project File

v

7.3.2. Checking Parameters and
Executing Builds

v

7.3.3. Going Online and Transferring
the Project Data

Y

7.4. Checking the Connection Status

v

7.4.1. Executing the Project File and
Checking the Receive Data

[El Precautions for Correct Use

Set up the code reader.

Set the parameters for the code reader.

Set up the controller.

Start the Sysmac Studio Automation Software and
load the Sysmac Studio Project File.

Check the setting parameters. Then, perform
program checks and builds on project data.

Place the Sysmac Studio online and transfer the
project data to the controller.

Execute the transferred project file to check that
Ethernet communications work correctly.

Execute the project file and check that correct data
is written to controller variables.

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
(Contact OMRON for information on how to obtain this file.)

10

I 7.2. Code Reader Setup

7. Connection Procedure

Set up the code reader.

[El Precautions for Correct Use

Use a PC (personal computer) to set the parameters for the code reader.
Note that you may need to change the PC settings depending on the condition of your PC.

7.21. Setting the Parameters

Set the parameters for the code reader.
Set the IP address of your PC to 192.768.188.100 and its subnet mask to 255.255.0.0.

1 Connect the cord reader and the
switching hub to the PoE
injector with cables.

Switching hub V460-HOPX
W4S1-05C POE hub
r=———-- 1
I 1
u] 1
H LAN cable : : Ethernet

cable

2 Connect the PC to the switching
hub with a LAN cable.

Connect 24 VDC power supply

LAN cable

(for the switching hub) to the
switching hub.
24 VDC power supply
3 Set the IP Address of the PC. General

For the IP address, enter
192.168.188.100. For the
subnet mask, enter 255.255.0.0.

For the procedure to open the
screen on the right, please refer
to the next step 4.

You can get IF settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically
(®) Use the following IF address:

IP address: | 192 . 168 . 188 . 100 |
Subnet mask: | 255.255. 0 . 0 |
Default gateway: | . . . |
Obtain DMS server address automatically
(@) Use the following DMS server addresses:
Preferred DNS server: | . . . |
Alternate DMNS server: | . . . |
[validate settings upon exit Cie el
Conce

11

7. Connection Procedure

4 Static connection (Setting the fixed IP address)

(1) Click the Start Button at the lower left corner of the screen, and then click Settings.

(2) Select Windows Settings — Network & Internet.

(3) Under Change your network settings, click Change adapter options.

(4) In Network Connections, right-click on the Ethernet icon and select Properties.

(5) In the Ethernet Properties Dialog Box, select Internet Protocol Version 4 (TCP/IPv4),
and click the Properties Button. Set the IP Address of the PC to 192.768.788.100.

(6) Click the OK Button.

5 Start your browser and enter

http.//192.168.188.2. & NewTab bt +
“Google Chrome” is the
recommended browser. C (o"'f‘ 192.168.188.2]

6 When the WebLinkHH startup
screen is displayed, go to step
8.

If you cannot access by .
WebLinkHH, go to step 7. O m Ro n

CWEBLINK nn

7 If the WebLinkHH startup screen does not appear, it means that communications are not
established between the code reader and the PC. Please check the following.
» The code reader and the PC have a proper physical (cable) connection.
— Refer to steps 1 and 2 for checking the connection.
* The IP Addresses of the PC and code reader are set correctly.
— Refer to step 4 for setting the IP address of the PC.

For other measures that can be taken, please refer to When unable to access by WebLinkHH
in 8-3 Q&A of the V460-H Industrial Handheld DPM Reader User Manual (Cat. No. Z461).

8 The WebLinkHH screen Psut) @ s)P wn Pros
appears.

Read Time (ms)

Output Data

/460-H3B0149 VA60 H | 192168171

7. Connection Procedure

9 Click on the gear icon on the

upper right of the screen and
select Advanced.

OMRON i @ =

Advanced

<)

Beeper

BB

Mew Load

Language... 3
Haptic Image
Storage

Reset:| Application ||| Factory |

Activate Account Management ..

About WebLink...

10 The Advanced Settings Screen

appears.

Select the Communications
Tab and check the settings for
Ethernet shown in the red
frame.

To use the defaults, you do not
need to change the settings.

If you need to change the IP
address, for example when
connecting multiple code

readers, change the IP Address

and subsequent settings as
necessary.

v

[search for settings * v
Ethernet
IP Address 192.168.188.2
Subnet 255.255.0.0
Gateway 192.168.188.2
|P Address Mode Static
TCP Port 1 2001
TCP Port 2 2003
Search and Configure Mode Enabled
EtherNet/IP Enabled |
EtherNetlP Byte Swapping Disabled
PROFINET Disabled
PROFINET Byte Swapping Disabled
Custom Ethernet Link
Custom Ethemet Link Disabled
Transport Layer TCP
Type Server
Capabilities Send/Receive

13

7. Connection Procedure

1 1 Click on the icon shown in the
red frame to save the settings to
the code reader.

Pl 0o

Cycles 21

Reads 21

No Read]

Mismatch 0
Read % 100.00

1 2 Finally, check the version
number of the code reader.
Click on the gear icon on the
upper right of the screen and
select About WebL.ink.

OMRON B Eax

Advancad Languags. Erming
1y

) § =

Besper Haptic Image

Storage

Reset:| Application |I| Factory |

Activate Account Management. ..

About WebLink. ..

You can check the current
version of the code reader in
About WebLinkHH.

13

Update the code reader to the
latest version as needed.

About WebLinkHH

OMmRON

PWEBLINK HH

Reader Model
Serial Number
Part Number

MAC ID

Sensor

Firmware

Boot

Browser
Operating System
Screen Resolution

Contact Us

V460-H

2147226
7412-2000-1005
00:0B:43:20:C3:9A
1280x960 (SXGA)
35-9000134-1.00RC 15
35-9000135-1.0.0 Alpha 1
Chrome 108.0.0.0
Windows 10

3440x1440

Done

7. Connection Procedure

I 7.3. Controller Setup

Set up the controller.

7.3.1. Starting the Sysmac Studio and Loading the Project File
Start the Sysmac Studio Automation Software and load the Sysmac Studio Project File.
Install the Sysmac Studio and USB driver on the PC beforehand. In addition, connect the PC
and the controller with a USB cable, and turn ON the power supply to the controller.

1 Start the Sysmac Studio. 5w —
Click Import.

* If a user account control dialog
box is displayed at startup,

select the option to start. Ny
P Sysmac Studio
Automation Software

2 The Import file Dialog Box is B import fle x
d|Sp|ayed Se|eCt the pl'OJeCt f||e « A <« Desktop » ProjectFile v O Search ProjectFile »
OMRON_V460_NJ_ETN(TCP)_ | Cwm=r feviels R =- ™ e

.) Mame Date modified Type
V1 00'csm2 (Sysmac StUdIO * Quickaccess I OMRON,VAIEO,NJ,EI'N(TCP),WOO.smc2 I 2022/07/0113:41 SMC2 File
Project File) and click Open. > B misee
¥ Metwork
* Obtain the latest version of the
Sysmac Studio Project File
from the OMRON website. E >
File name: | OMRON_V460_NJ_ETN(TCP)_V100.smc V| Sysmac Studio project file (*.sm
Cancel
3 The OMRON_

V460_NJ_ETN(TCP)_V100
Project Window is displayed.
The window consists of three
panes: “Multiview Explorer” on
the left side, “Edit Pane” in the
center, and “Toolbox” on the
right side.

15

7. Connection Procedure

7.3.2. Checking Parameters and Executing Builds
Check the setting parameters. Then, perform program checks and builds on project data.

1 Double-click Built-in bl Configurations and Setup
EtherNet/IP Port Settings i EtherCAT
under Configurations and p =5 CPU/Expansion Racks
/O Map

o
¥ & Controller Setup

Setup — Controller Setup in the

Multiview Explorer.
L Operation Settings

L&

> £+ Motion Control Setup

2 The Built-in EtherNet/IP Port
Settings Tab Page is displayed
in the Edit Pane. T
¥ |P Address

Select TCP/IP, select the Fixed SR
setting Option in IP Address, il 192 - 168 . 188 . _1

Subnet mask EERIEL T | Y
and check that the settings are ' =

Built-in EtherMet/IP Port 5...

Default gateway .
as follows. ' @ Obtain from BOOTP server.

IP Address: 192.168.188.1 @ Fixat the IP address obtained from BOOTP server.
DNS
Subnet mask: 255.255.0.0 —

p Host Name - IP Address
Default gateway: . . .

¥ Keep Alive
Keep Alive @ Use © Do not use

Check that Keep Alive is set as : Keep Alive monitoring time [JESSGG—EI] sec
Linger optior:) Do not specify) Specify

¥ |P Router Table

follows.

Keep Alive: Do not use
Linger option: Do not specify

3 Double-click Task Settings > Event Settings
under Configurations and L
Setup in the Multiview Explorer. k] Data Trace Settings

4 The Task Settings Tab Page is
displayed in the Edit Pane.
Select Program Assignment
Settings and confirm that
Primary Task is set to
Program0.

W B PrimaryTask

Program name

1 |Program

16

7. Connection Procedure

5 Select Check All Programs
from the Project Menu.

Project Controller Simulation Tool
Check All Programs Fr
Check Selected Programs Shift+F7

Build Controller Fa
Rebuild Controller

6 The Build Tab Page is displayed
under the Edit Pane.
Confirm that 0 is shown for both

uvescription Location

Errors and Warnings.

7 Select Rebuild Controller from Project Controller Simulation Tool

the Project Menu. Check All Programs F7

Check Selected Programs Shift+F7

Build Controller F8
Rebuild Cantroller

A dialog box showing the
progress of conversion appears.

In the Build Tab Page, confirm
that 0 is shown for both Errors
and Warnings.

Location

17

7. Connection Procedure

7.3.3. Going Online and Transferring the Project Data
Place the Sysmac Studio online and transfer the project data to the controller.

1 Select Communications Setup Controller Simulati Tools. Window. . Help
from the Controller Menu. |i C P

Change Device

Cnline Ctrl+'W
2 The Communications Setup T —— o =
Dialog Box is displayed. T T ——

In Connection type, select the
Direct connection via USB
Option.

CIICk OK' ¥ Remote IP Address
Specify the remote IP address.
USB Communications Test Ethemnet Communications Test
|
¥ Options
K4 Confirm the serial ID when going online.
Kl Check forced refreshing when gaing offline.
:mtw(»ns such as VPN connection.
3 Select Online from the Controller Simulation Tools Window Help

Controller Menu.

e |

Communications Setup...

Change Device

Cnline Ctrl+W

A confirmation dialog box
appears. Click Yes.

Sysmac Studio

* The dlalog bOX dlsplayed The CPU Unit has I'?CI nal‘_l'lE. - _ . ’
differS depending on the StatUS Do you want to write the project name [new_Controller_0] to the CPU Unit name? (Y/N)
of the controller being used.
Select Yes to proceed with the
operation.

Sysmac Studio

Serial ID not matched.

* The serial IDs displayed vary roject
depend|ng on the deV|Ce Mame: [new_Controller_0]

Serial ID: [K01-12514-7973]
Controller:
Mame: [new_Controller 0]

Serial ID: [R01-18612-0816]

Do you want to continue the connection processing? (Y/N)

Sysmac Studio

| h

Do you want to change the Serial ID in the project to the controller’s Serial ID? (Y/N)
(It will be used at the ID check of next online connection.)

18

=

7. Connection Procedure

Note

Refer to Section 6 Online Connections to a Controller in the Sysmac Studio Version 1
Operation Manual (Cat. No. W504) for details on online connection to the controller.

When you are online, a yellow
border appears in the upper part
of the Edit Pane.

Multiview Explorer

Select Synchronize from the Controller Simulati Tools.. Window. Help
Controller Menu.

Orffline Ctrl+ Shift+W

Synchronize... Ctrl+M

e — — — T —

The Synchronization Dialog Box
is displayed.

Confirm that the check box for
the data to transfer (i.e., NJ301
on the figure on the right) is
selected, and click Transfer to
Controller.

e | Controller: DataName

A confirmation dialog box
a ppea rs i Cl i Ck Yes i Confirm that there is no problem if the controller operation is stopped.

The operating mode will be changed to PROGRAM mode. Then, EtherCAT slaves will be reset and forced refreshing will
be cancelled.
Are you sure that you want to execute the transfer?(Y/N)

The Synchronizing Dialog Box
appears.

A confirmation dialog box
appears. Click Yes.

Sysmac Studio

Confirm that there is no problem if the controller operation is started.
The operating mode will be changed to RUN mode.

Do you want to continue?(Y/M)

Yes I No

19

7. Connection Procedure

8 Confirm that the synchronized

Computer: Update Date | Controller: Update Date |Controller: bata arric

Compare
st

data is now shown in the text

color of Synchronized and the

following message is displayed:

The Synchronization process

successfully finished.

If there is no problem, click

Close.

* If synchronization fails, check
the physical connections and

redo the procedure.

I 7.4. Checking the Connection Status

Execute the transferred project file to check that Ethernet communications work correctly.

Precautions for Correct Use

Before performing the following steps, confirm that the LAN cable is connected securely.
If it is not connected, first turn OFF the power supply to the device and then connect the LAN
cable.

7.4.1. Executing the Project File and Checking the Receive Data
Execute the project file and check that correct data is written to controller variables.

Precautions for Safe Use

Confirm the system safety before you execute the project file.
The connected devices may malfunction regardless of the operating mode of the unit,

resulting in injury.

1 This document uses the 2D
code shown in the right figure
as an example of reading.
Set the code reader to the
position where it can read the

2D code in the right figure.

20

7. Connection Procedure

2 Confirm that the RUN mode is

. Controller Status
shown in the Controller Status

Pane of the Sysmac Studio.

ONLINE @ 192.168.188.1
ERR/ALM @& RUN mode

If PROGRAM mode is shown,
select Mode — RUN Mode from | Centraller: Simulation Tools Window . Help
the Controller Menu. i

Cffline Ctrl+Shift+W

Synchronize.. Ctrl+M

Transfer... 4

Mode 4 RUN Mode... Ctrl+3

A confirmation dialog box
appears. Click Yes. L1

Sysmac Studic

Make sure a Controller startup will cause no problem.
Do you want to change to RUN Mode? (Y/N)

Yes Mo

3 Check that the controller is in a
Monitor state by the Monitor

and Stop Monitoring Buttons
in the Sysmac Studio toolbar. Monitor
The controller is in a Monitor ﬂ Stop Monitoring

state if the Monitor Button is
Contreller Simulation Tools Window Help

selected (not selectable) and I
the Stop Monitoring Button is i
selectable, as shown in the
figure on the right. Offline Cirl+Shift+W
* If the controller is in a Stop if:nc::Tize"' ce X
Monitoring state, select Vode ,
Monitor from the Controller Monitor
Menu in the Sysmac Studio.
4 Select Watch Tab Page from T
the View Menu. Multiview Explorer Alt+1
Project Shortout View Alt+5hift+1
! Toolbox Alt+2
I Cutput Tab Page Alt+3
i Watch Tab Page Alt+4
'l Watch Tab Page(Table) Alt+5Shift+4

21

7. Connection Procedure

5 The Watch window Tab Page
is displayed under the Edit _
Pa ne. ¥ I PrimaryTask

Program name

new_Controller_ 0 Program0.Input_Start

new_Controller_0 Program0.0utput_ErrCode

6 Confirm that the variables
shown in the figure on the right
are listed in the Name column.

Program(.Output_ErrCode
Pragram0.Output_SktCmdsErrorlD
P

rogramO.Output_SkTcleseErrorlD

Error codes

* If any of the required
variables are not listed, click

Input Name and add them. TCP
Program0.Output MErmCode connection
* In the following description, Program0.Output_EtnTcpSta status

“ProgramQ” of the variable
names in the Name column is
omitted.

Program(.ETN_SendMessageSet_instance.Send_Data
Program0.Output_Recviess —
A\l Program(.Local_Status _‘

Program execution status Receive data Send data

Name IOnline valuel Modify

7 Click TRUE in the Modify [

column of Input_Start. Program0.Input_Start False TRUE FALSE
The Online value of
Input_Start changes to True. iy
| Name |Online valuel Modify I
Program0.Input_Start Tn.IE FALSE I

8 Press the trigger button on the code reader within 15 seconds after the online value
changes to True to read the code. This program will end with an error after a certain period
of time because the communication processing branches to the error end.

9 When the communications |Online valuel Modify
have ended normaIIy, the ProgramQ.Input_Start m‘ FALSII
Program0.Output_ErrCode

values of the error codes are 0. Brogram0.Outout SHCmdsterD

The value of the TCP Program0.Output_SkTcloseErrerlD

connection status

(Output_EtnTcpSta) is

_CLOSED.

* If the program ends with an
error, the error code will be
stored according to the error

Program0.Output_MEmCede 0000 0000
Program0.Output_EtnTcpSta _CLOSED

that occurred. Refer to 9.6.
Error Processing for details
on error codes.

22

7. Connection Procedure

In addition, the Online value of
Local_Status.Done indicating
the program execution status is
True. If the program ends with
an error, the value of

Local _Status.Erroris True.

* If you click FALSE for
Input_Start, the values of
Local_Status also change to
False. For more information,
refer to 9.5. Timing Chart.

Name |Online valuel Modify

Program(.Local_Status _

False TRUE FALSE

True TRUE FALSE
False TRUE FALSE

10

The response data received
from the code reader is stored
in Output_RecvMess.
(ETN_SendMessageSet_insta
nce.Send_Data is a send
command.)

Specify and check the
referenced area in the Watch
Tab Page, as shown in the
figure on the right.

* The receive data in the figure
on the right varies depending
on your environment.

Online value

Program@.Input_Start

Program0.Output_ErrCode
Program.Output SktCmdsErrorlD
Program.Output_SkTcloseErrerdD

Program.Output MErrCode 0000 0000

Program0.Output_EtnTcpSta _CLOSED

Programi0.ETM_SendMessageSet_instaliiesss

Program0.Output_RecvMess

Response Format

Read data
A
la N
112|3|4(5|6|7|8|9|0|A|02|C|D|E| CR | LF
Footer

23

8. Initializing the System

8. Initializing the System

This document assumes that each device uses the factory default settings.
If you change their settings from the defaults, you may not be able to perform various setting
procedures as described.

| 8.1. Initializing the Controller
To initialize the controller, initialize the CPU Unit.
Before initialization, place the controllerin PROGRAM mode, and select Clear All Memory
from Controller Menu in the Sysmac Studio. When the Clear All Memory Dialog Box is
displayed, confirm the contents and click OK.

Clear All Memaory — O W

Clear All Memory

This function initializes the target area of destination Controller.
Confirm the area to initialize first, and press the OK button.

CPU Urit Name: new_Controller_0
Model: MJ301-1200

Area: User Program
User-defined Variables
Controller Configurations and Setup
Security Information
Settings of Operation Authority (initialization at the next online)

B Clear event log

I 8.2. Initializing the Code Reader

For information on initializing the code reader, please refer to How to initialize the settings? in
8-3 Q&A of the V460-H Industrial Handheld DPM Reader User Manual (Cat. No. Z461).

24

9.

9. Project File

Project File

This section describes the details of the project file used in this document.

I 9.1. Overview

=\

This section describes the specifications and functions of the project file used for connecting a
V460-H Series Code Reader (hereinafter referred to as “code reader”) to a controller’s built-in
EtherNet/IP port (hereinafter referred to as “built-in EtherNet/IP port”).

“Project file” here refers to a Sysmac Studio Project File.

The project file contains the following data.

* Built-in EtherNet/IP port communication settings and program task settings

* Program and function blocks for socket communications

* Variable tables and data type definition of variables used in the ST language program

This project file uses the socket service function of the built-in EtherNet/IP port to execute the
“< >” (Read trigger) command on the code reader and judges whether it reaches the normal
end or error end.

In the project file, “normal end” means that TCP socket communications have ended normally.
On the other hand,“error end” means that TCP socket communications have ended with an
error.

The project file does not use the keep-alive and linger functions, which are TCP socket
options. Consider using them as needed when designing your application.

Note

We have verified in our test configuration that the project file enables communications for the
product versions and product lot used for evaluation.

However, we do not guarantee its operations where there are electrical noise or other
disturbances, or variations in the performance of the devices themselves.

Note

In the Sysmac Studio, if it is necessary to distinguish between decimal data and hexadecimal
data, add “Variable Type and #” to the beginning of the decimal data and “Variable Type, 16,
and #” to the beginning of the hexadecimal data. (Example: INT#1000 for decimal data,
INT#16#03E8 for hexadecimal data, etc. For DINT, “Variable Type and #’ is not required.)

25

9. Project File

9.1.1. Communications Data Flow
This is the flow from issuing a TCP socket communications command from the built-in
EtherNet/IP port to the code reader and receiving response data from the code reader. The
project file executes a processing sequence of TCP open to TCP close in a continuous
manner. If response data is divided and arrives as multiple pieces of receive data, receive

processing will be repeated.

TCP Open Processing

v
Command Send
Processing

v
Response Receive
Processing

v
Close Processing

The built-in EtherNet/IP port issues a TCP open
request to the code reader to establish a TCP
connection.

V460-H does not send commands.
Press the trigger button on the code reader to read
the code.

The built-in EtherNet/IP port stores the response data
received from the code reader in the internal memory
of the specified CPU Unit.

The built-in EtherNet/IP port issues a close request to
the code reader to close the TCP connection.

* Depending on the code reader or the command used, response data may not be sent after
the command is received or response data may be sent immediately after a connection is
established. For this reason, this project file allows you to set whether or not send/receive
processing is required in the Ethernet Communications Sequence Setting function block.

If Send only is set, response receive processing will not be executed. If Receive only is set,

command send processing will not be executed.

26

9. Project File

9.1.2. TCP Socket Communications Using Socket Service Instructions
This section provides an overview of function blocks for TCP socket services (hereinafter
referred to as “socket service instructions”) and the general movement of send and receive
messages.

=\

Note

For details, refer to EtherNet/IP Communications Instructions in Section 2 Instruction
Descriptions of the Machine Automation Controller NJ/NX-series Instructions Reference
Manual (Cat. No. W502).

e TCP Socket Services Using Socket Service Instructions
This project file uses the following five standard instructions to implement socket
communications.

Name Function block Description

TCP Socket SktTCPConnect Connects to a TCP port on the code reader by

Connect active open.

TCP Socket SktTCPSend Sends data from the specified TCP socket.

Send

TCP Socket SktTCPRcv Reads data received from the specified TCP

Receive socket.

TCP/UDP Socket | SktClose Closes the specified TCP socket.

Close

Get TCP Socket | SktGetTCPStatus | Reads the status of the specified TCP socket.

Status The project file uses this instruction to check the
completion of receiving in receive processing
and to check the closed status in close
processing.

* The Socket obtained by the Connect TCP Socket instruction (SktTCPConnect:
SktTCPConnect_instance) is used as an input parameter for other socket service

instructions. The specifications of the data type structure _sSOCKET of Socket are as

follows.
Variable Name Description Data type Valid range :/r;ltba;
Socket Socket Socket _sSOCKET -—- -—-
Handle Handle Handle for UDINT Depends on -
sending/receiving data data type.
SrcAdr Source Local node address™ _SSOCKET_ - -
Address ADDRESS
PortNo | Port No. Port number UINT 0 to 65535
IpAdr IP Address | IP address or host name™ | STRING Depends on
data type.
DstAdr Destination | Remote node address™ _SSOCKET_ - -
Address ADDRESS
PortNo | Port No. Port number UINT 1 to 65535
IpAdr IP Address | IP address or host name™ | STRING Depends on
data type.

*1: “Address” refers to an IP address and a port number.
*2: DNS or Hosts settings are required to use a host name.

27

e Send and Receive Messages

9. Project File

Send message *k *k *k *k *k ok ok ok *x ok *x
Header Command data Footer
Controller Code reader
5
>
* L
<
Receive ox - - *k *k *k *k *k - * -
message b 1 | | 1 1 | ...
(Response) Header Response data Footer
Receive ok *k *k *k *k *k *k * *k o *k
message b |1 | | 1 1 | ...
(Error response) Header Response data (Error code) Footer

e Communications Sequence

The figure below shows the processing flow of TCP communications between the code

reader (server) and the controller (client).

Controller
(Client)

——

\ 4

—
Open processing | Connection open request

Code reader
(Server)

Passive open

Active

14 \ 4

Connection open

Data send

Send data

Connection open

il
d

processing J

ACK (Acknowledge)

\
Next data send
processing

Send data

Data receive
request

Data send

ACK (Acknowledge)

request

< ‘ |~ A ‘ |~ L

A
Data receive
processing
\

Close request

Next data send
request

el
]

I

Close processing |

i Close

U

28

9. Project File

I 9.2. Error Judgment Processing

This section describes error judgment processing in the project file.

9.2.1. Error Judgment in the Project File
In this project file, error judgment processing is executed for the following three types of errors
(1) to (3). Refer to 9.6.1. Error Code List for information on error codes.

Ctroller Code reader

Ethernet cable

L F =
>

(1)) 3)
(1) Communications error during TCP socket communications using socket service
instructions

An error that was detected by a program in TCP socket communications, such as a
communications hardware error, command format error, or parameter error, is judged as a
“‘communications error”. This judgment is made based on the socket service instruction
argument “ErrorID”.

(2) Timeout error during communications with the code reader
An error that occurred due to abnormal open, send, receive, or close processing that failed
to complete within the monitoring time is judged as a timeout error. This judgment is made
based on timer monitoring in the project file. Refer to 9.2.2. Time Monitoring Function for
information on time monitoring using the internal timers of the project file.

(3) TCP connection status error at end of processing
The project file uses a procedure in which the overall processing ends after the last close
processing is done, regardless of whether the open to receive processing steps have
ended normally or ended with an error. Therefore, judgment of whether close processing
has ended normally is made based on the TCP connection status variable TcpStatus in the
SktGetTCPStatus instruction. If there is an error in close processing, the next open
processing may not be executed correctly. Refer to 9.6.2. TCP Connection Status Error
Situation and Correction for information on how to correct a TCP connection status error.

29

9.2.2.

=

Time Monitoring Function

This section describes the time monitoring function in the project file.

9. Project File

The monitoring time settings can be changed by using variables in the function block

ParameterSet.

e Time Monitoring Using Internal Timers of the Project File

Assuming that processing has the executing status and does not end due to an error, the
project file uses its internal timers to interrupted the processing (i.e., timeout). The timeout is
set to 715 s for each processing phase from open to close.

Time Monitoring Using Internal Timers of the Project File

. Y o Variable Timeout
Processing | Monitoring description name (default)
Open . Time from start to end of open processing | TopenTime Atter 15 s
processing (UINT#1500)
Send) . ! After 15 s
processing Time from start to end of send processing | TfsTime (UINT#1500)

Time from start to end of receive
Receive Eil? rC:cSeSi:/r:agprocessing is repeated, the TfrTime After 15 s
processing software part monitors the time for each (UINT#1500)
repetition of receive processing.
Time from start to end of close processing
Close The softyvare part phecks that the TCP _ After 15 s
rocessin connection status is normal after close TcloseTime (UINT#1500)
P 9 processing to judge the end of the
processing.

e Time Monitoring Using the Built-in EtherNet/IP Port (Socket Service)

The built-in EtherNet/IP port has a time monitoring function for receive data that arrives in
segments, as a socket service. In receiving processing, it stores the TimeOut parameter of
the socket service instruction SktTCPRcv_instance to TrTime=UINT#3(300ms) (initial value).
The project file also sets the variable TrTime as the Receive Wait Time Monitoring Timer for
the next response receive wait time after completion of receiving a response. If the next
response from the code reader does not arrive within this time, it will be judged that the
receive processing has ended.

Note

For information on time monitoring using the socket service, refer to Skt TCPRcv Instruction in
Section 2 Instruction Descriptions of the Machine Automation Controller NJ/NX-series
Instructions Reference Manual (Cat. No. W502).

e Resending and Time Monitoring Using the Built-in EtherNet/IP Port (TCP/IP)

If a communications error occurs, TCP/IP automatically resends the data and monitors the
processing time if there is no problem with the built-in EtherNet/IP port. If processing ends
with an error in the middle of it, the project file stops the resending and time monitoring via
TCP/IP in close processing. However, if the close processing shows a TCP connection
status error, the resending and time monitoring via TCP/IP may continue to be active in the
built-in EtherNet/IP port. Refer to 9.6.2. TCP Connection Status Error Situation and
Correction for information on the error situation and correction.

30

I 9.3. Variables Used

9. Project File

This section describes variables used in the project file.

9.3.1. Lists of Variables Used
Below are lists of variables required in order to execute this project file.

e Input Variable

The following variable is used to manipulate the project file.

Variable name Data type

Description

Input_Start BOOL

Executes the project file when the value changes from OFF
(FALSE) to ON (TRUE). The value changes from ON to OFF after

the check of normal end or error end output.

e Output Variables

The following variables reflect the execution results of the project file.

Variable name

Data type

Description

Output_RecvMess

STRING[256]

Stores receive data (response). (An area of 256 words

is secured.)

Output_ErrCode

WORD

Stores the error result (flag) for a communications error
or timeout error detected during open processing, send
processing, receive processing, and close processing.

#0000 is stored when the processing ends normally.

Output_SktCmdsErrorID

WORD

Stores the error code for a communications error or
timeout error detected for each socket service
instruction in open processing, send processing, and
receive processing.

#0000 is stored when the processing ends normally.

Output_SkTcloseErrorlD

WORD

Stores the error code for a communications error or
timeout error detected for the SktTcpClose instruction in
close processing, aside from errors in open processing,
sending processing, and receiving processing.

#0000 is stored when the processing ends normally.

Output_EtnTcpSta

_eCONNECTION
_STATE

Stores the TCP connection status when a
communications error or timeout error is detected in

close processing.

_CLOSED is stored when the processing ends

normally.

Output_MErrCode

DWORD

Stores the error code of an FCS calculation error or
code reader error detected as a result of receive
processing.

#00000000 is stored when the processing ends

normally.

31

e Internal Variables

9. Project File

The following variables are used only for the purpose of calculation in the project file.

Variable name Data type Description
Local_Status sStatus Program execution status
(STRUCT)
Busy BOOL Changes to TRUE when the project file is executed and
to FALSE when it is not executed.
Done BOOL Changes to TRUE when the project file ends normally
and to FALSE when Input_Start changes from TRUE to
FALSE.
Error BOOL Changes to TRUE when the project file ends with an
error and to FALSE when Input_Start changes from
TRUE to FALSE.
Local_State DINT State Processing No.
Local_ErrCode uErrorFlgs Sets an error code.
(UNION)
Local_ErrCode.Word | WORD Expresses the error code as WORD data.

Data

Local_ErrCode.
BoolData

ARRAY[0..15]
OF BOOL

« Communications error
BoolData[0]: Send processing:
Error (TRUE)/Normal (FALSE)

BoolData[1]: Receive processing:
Error (TRUE)/Normal (FALSE)

BoolData[2] Open processing:
Error (TRUE)/Normal (FALSE)

BoolData[3]: Close processing:
Error (TRUE)/Normal (FALSE)

BoolData[4]: Processing number:
Error (TRUE)/Normal (FALSE)

Timeout error

BoolData[8]: Send processing:
Error (TRUE)/Normal (FALSE)

BoolData[9]: Receive processing:
Error (TRUE)/Normal (FALSE)

BoolData[10] Open processing:
Error (TRUE)/Normal (FALSE)

BoolData[11]: Close processing:
Error (TRUE)/Normal (FALSE)

Others

BoolData[5]: Send/Receive required judgment error:
Error (TRUE)/Normal (FALSE)

BoolData[12]: Code reader error:

Error (TRUE)/Normal (FALSE)
BoolData[6..7],[13..14]: Reserved

BoolData[15]: Error occurred

32

9. Project File

Variable name Data type Description
Local_ExecFlgs sControl Socket service instruction execution flag
(STRUCT)
Send BOOL Send Processing instruction:
Executed (TRUE)/Not executed (FALSE)
Recv BOOL Receive Processing instruction:
Executed (TRUE)/Not executed (FALSE)
Open BOOL Open Processing instruction:
Executed (TRUE)/Not executed (FALSE)
Close BOOL Close Processing instruction:
Executed (TRUE)/Not executed (FALSE)
Status BOOL TCP Status instruction:
Executed (TRUE)/Not executed (FALSE)
Local_SrcDataByte UINT Sets the number of bytes of send data.
Local_SrcData ARRAY[0..2000] | Send data storage area for SktTCPSend instruction
OF BYTE (SktTCPSend_instance). (An area of 256 words is

secured.)

Local_RecvData

ARRAYT0..2000]
OF BOOL

Receive data (response) storage area for SktiTCPRcv
instruction (SktTCPRcv_instance). (An area of 256

words is secured.)

Local_ReceiveMessage

STRING[256]

Local_RecvDataReceived string data (response)

storage area. (An area of 256 characters is secured.)

Local_RecvCheckFlg BOOL Code Reader Error Judgment Instruction Execution
Flag: Executed (TRUE)/Not executed (FALSE)
Local_InitialSettingOK BOOL Initialization Normal Setting Flag
Local_TONFlIgs sTimerControl Timer Execution Flag
(STRUCT)
Tfs BOOL Send Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tfr BOOL Receive Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Topen BOOL Open Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tclose BOOL Close Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tr BOOL Next Response Receive Wait Time Monitoring Timer
Instruction: Executed (TRUE)/Not executed (FALSE)

33

9. Project File

Variable name

Data type

Description

Local_ComType

sControl
(STRUCT)

Sets whether or not send processing or receive

processing is required.

Send

BOOL

Send processing:

Required (TRUE)/Not required (FALSE)

* If send processing is required, but receive processing
is not required:
The program will skip receive processing and go to
close processing without waiting for receive data in
send processing. Specify this value when response

data is not sent back to the command sent.

Recv

BOOL

Receive processing:

Required (TRUE)/Not required (FALSE)

* If both send processing and receive processing are
required:
The program will wait for the arrival of receive data
after send processing. The program will go to receive
processing after checking the arrival of receive data.
Specify this value when response data is sent back to

the command sent.

Error

BOOL

Send/Receive Processing Required Setting Error Flag

(This flag is set if there is a setting error.)

e Variables for Initializing Socket Service Instructions

Variable name Data type Description
NULL_SOCKET _sSOCKET Internal socket service instruction initialization data
(Retain constants: Enabled)
Initial value (Handle:=0, SrcAdr:=(PortNo:=0, IpAdr:="),
DstAdr:=(PortNo:=0, IpAdr:="))
(Used for all socket instructions.)
NULL_ARRAYOFBYTE_1 | ARRAY[0..0] Internal send socket service instruction initialization data
OF BYTE (Retain constants: Enabled)
Initial value [0] (Use for the SktTCPSend instruction)
NULL_ARRAYOFBYTE_2 | ARRAY[0..0] Internal receive socket service instruction initialization
OF BYTE data (Retain constants: Disabled)

Initial value [0] (Use for the SktTCPRcv instruction)

34

9. Project File

9.3.2. Lists of Variables Used in User-defined Function Blocks/Functions

Below are lists of function blocks that must be user-defined in programs in order to execute

this project file.

For information on the following function block variables, refer to 9.4.3. Detailed Explanation of

Function Blocks.

Variable name

Data type Description

ETN_ParameterSet_instance

ParameterSet Ethernet settings (Remote IP address, etc.)

Monitoring time from open processing to

close processing

ETN_SendMessageSet_instance

SendMessageSet | Send/receive processing required setting and

send message setting.

ETN_ReceiveCheck_instance

ReceiveCheck Receive data storage and normal/error

judgment

e Timers

The following timers are used in the project file.

Variable name

Data type Description

Topen_TON_instance

TON

Measures the monitoring time for open processing.

Tfs_TON_instance TON Measures the monitoring time for send processing.
Tfr_TON_instance TON Measures the monitoring time for receive processing.
Tclose_TON_instance TON Measures the monitoring time for close processing.
Tr_TON _instance TON Measures the processing time for the next response

receive wait time.

9.3.3. Lists of System-defined Variables
Below are lists of variables required in order to execute this project file.

e System-defined Variables (External Variables)

Variable name

Data type

Description

_EIP_EtnOnlineSta

BOOL

Built-in EtherNet/IP port's communications status:
TRUE: Available, FALSE: Not available

=

Note

For information on system variables and communications instructions, refer to EtherNet/IP

Communications Instructions in Section 2 Instruction Descriptions of the Machine Automation
Controller NJ/NX-series Instructions Reference Manual (Cat. No. W502).

35

I 9.4. Programs (ST Language)

9. Project File

9.4.1.

Functional Components of the ST Language Program

This project file is written in the ST language. The functional components of the project file are

as follows.

Category

Subcategory

Description

1. Communications
Processing

1.1.

1.2.

1.3.

Communications Processing
Start

Communications Processing
Status Flag String Clearing
Communications Processing
Executing Status

Executes communications processing.

2. Initialization

2.1.

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

Processing Time Monitoring
Timer Initialization

Socket Service Instruction
Initialization

Socket Service Instruction
Execution Flag Initialization
Processing Time Monitoring
Timer Execution Flag
Initialization

Error Code Storage Area
Initialization

Processing Monitoring Time
Setting and Ethernet-related
Parameter Setting
Send/Receive Processing
Required Setting and Send
Data Setting

Send Data Conversion from
String to Byte Array
Receive Data Storage Area
Initialization

Initialization End Processing

Sets Ethernet parameters and initializes
the error code storage area.

Sets whether or not the send/receive
processing is required, send data, and
receive data.

3. Open Processing

3.1

3.2.

3.3.

Open Processing Status
Judgment and Execution Flag
Setting

Open Processing Time
Monitoring Timer Execution
Open Instruction Execution
(TCP Active Open Processing)

Executes TCP open (active) processing.
Processing starts after communications
processing is started and initial setup is
done.

4. Send Processing

4.1.

4.2.

Send Processing Status
Judgment and Execution Flag
Setting

Send Processing Time
Monitoring Timer Execution

Starts processing if the Send Processing
Required Flag is set to Required and open
processing has ended normally.

4.3. Send Instruction Execution
5. Receive 5.1. Receive Processing Status Starts processing if the Receive
Processing Judgment and Execution Flag | Processing Required Flag is set to

5.2.

5.3.

54.
5.5.

5.6.

Setting

Receive Wait Time Monitoring
Timer Execution

Receive Processing Time
Monitoring Timer Execution
Receive Instruction Execution
Get TCP Status Processing
Execution

Code Reader Error Judgment
Instruction Execution

Required and send processing has ended
normally.

If receive data arrives in segments,
receive processing is repeated.

Stores and checks the receive data.

36

9. Project File

Category

Subcategory

Description

6. Close Processing 6.1.

6.2.

6.3.
6.4.

Close Processing Status
Judgment and Execution Flag
Setting

Close Processing Time
Monitoring Timer Execution
Close Instruction Execution
Get TCP Status Processing
Execution

Executes close processing.
Processing starts in the following cases.

* Receive Processing Required Flag is
set to Not required and send processing
has ended normally.

* Receive processing ends normally.

» Open processing, send processing, or
receive processing ends with an error.

7. Processing Error 7. Processing No. Error Processing

Processing

Executes error processing if a
non-existent processing number is
detected.

37

9.4.2. Detailed Explanation of the Main Program

A detailed explanation of the project file is given below.

9. Project File

Communication settings that need to be changed depending on the code reader, send data
(command) settings, and receive data (response data) are checked in function blocks

(ETN_ParameterSet_instance, ETN_SendMessageSet_instance, and

ETN_ReceiveCheck_instance). For how to change the values of these settings, refer to 9.4.3.

Detailed Explanation of Function Blocks.

Main Program: ProgramO
1. Communications Processing

(* Name: NJ Series Ethernet Communications Program *)
(* Function: Ethernet Communications Main Program)
(* Ethernet Unit: NJ501 (Built-in EtherMNet/IP Port))

(* Remarks: *)

(* *)
(* Version Information: V1.00, Created August 1, 2011 %)
(* *)

(* (C)Copyright OMRON Corporation 2011 All Rights Reserved.)
*

(* 1. Communications Processing *)

(* Variable Description: Communications Processing for Control ========z=====z===z==z==z==z=z====z===z===z==z===z=z===z======z=z)

()
(Input Start Flag : Input_Start)

()

(Communications Processing Status Flag String : Local_Status<STRUCT=)

)

— Communications Processing Executing Flag (Busy) : Local_Status.Busy)

(

(

(F Communications Processing Normal End Flag (Done) : Local_Status.Done)
(= Communications Processing Error End Flag (Error) : Local_Status.Error)
()

(State Processing No.: Local_State)

(10: Initialization)]

(11: Open Processing)

(12: Send Processing)

(13: Receive Processing)

(14: Close Processing)

(99: Processing No. Error Processing)

({

(* 1.1. Communications Processing Start

Starts communications processing when Input Start Flag is turned ON with Communications Processing Status Flag String cleared. *)

IF Input_Start AND
MNOT(Local_Status.Busy OR Local_Status.Done OR Local_Status.Error) THEN
Local_Status.Busy:=TRUE;
Local_State:=10: // Go to 10: Initialization.
END_IF:

(* 1.2. Communications Processing Status Flag String Clearing

Clears Communications Processing Status Flag String if Input Start Flag is turned OFF when communications processing is not executed. *)

IF NOT(Local_Status.Busy) AND NOT(Input_Start) THEN
Local_Status.Done:=FALSE:
Local_Status.Error=FALSE

END_IF:

(* 1.3. Communications Processing Executing Status

Executes processing according to State Processing No. (Local_State) *)
IF Local_Status.Busy THEM

CASE Local_State OF

38

9. Project File

2. Initialization
10: {* S *)
(* 2. Initialization *)
(* - Executes various types of initialization and parameter setting for overall communications.)
(* = Sets send data and initializes receive data storage area. *)

[== ¥

(* 2.1. Processing Time Monitoring Timer Initialization *)
Topen_TON_instance (In:=FALSE.PT:=TIME#0ms);
Tfs_TOM_instance (In:=FALSE,PT:=TIME#0ms);
Tr_TON_instance (In:=FALSE PT:=TIME#0Ims);

Tfr TOM_instance (In:=FALSE,PT:=TIME#0ms);
Tclose_TOM_instance(ln:=FALSE,PT:=TIME#0ms);

(* 2.2. Socket Service Instruction Initialization *)

SktTCPConnect_instance(
Executer=FALSE.SrcTepPort=UINT#0,DstTecpPort:=UINT#0.DstAdrn=");

SktTCPSend_instance(

Execute:=FALSE Socket:=NULL_SOCKET, Size:=UINT#0,
SendDat:=NULL_ARRAYOFBYTE_1[0]);

SktTCPRov_instance(
Execute:=FALSE,Socket:=MNULL_SOCKET,Size:=UINT#0, TimeQut:=UINT#0,
RewDat:=NULL_ARRAYOFBYTE_2[0]):

SkTclose_instance(

Execute:=FALSE Socket:=MULL_SOCKET):

SktGetTCPStatus_instance(

Execute:=FALSE Socket:=NULL_SOCKET);

(* 2.3. Socket Service Instruction Execution Flag Initialization *)

(* Variable Description: Socket Service Instruction Execution Flag (for Execute Parameter) ================)
()

[Socket Service Instruction Execution Flag String: Local_ExecFlgs<STRUCT =)

(| l)

(I Send Instruction Execution Flag (SktTCPSend) : Local_ExecFlgs.Send }

(FReceive Instruction Execution Flag (SktTCPRcv) : Local_ExecFlgs.Recv)

(I Open Instruction Execution Flag (SktTCPConnect) : Local_ExecFlgs.Open)
(| Close Instruction Execution Flag (SkTclose) : Local_ExecFlgs.Close)

(- TCP Get Status Instruction Execution Flag]

((SktGetTCPStatus) : Local_ExecFlgs.Status)
Local_ExecFlgs.Send:=FALSE;

Local_ExecFlgs.Recv:=FALSE;

Local_ExecFlgs.Open:=FALSE;

Local_ExecFlgs.Close:=FALSE;

Local_ExecFlgs.Status:=FALSE;

(* 2.4. Processing Time Monitoring Timer Execution Flag Initialization *)

(* Variable Description: Processing Time Monitoring Timer Execution Flags (for Input Parameters) =====================)
()

(Processing Time Monitoring Timer Execution Flag String: Local_TONFIgs<STRUCT »)
C | l }

(I Send Processing Time Manitoring Timer Execution Flag (Tfs_TON): Local_TONFlgs.Tfs)

(| Receive Processing Time Monitoring Timer Execution Flag (Tfr_TON): Local_TONFlgs.Tfr)
(I Open Processing Time Monitaring Timer Execution Flag (Topen_TON))

o * Local_TOMFlgs.Topen)

(I Close Processing Time Monitoaring Timer Execution Flag (Tclose_TON))

| : Local_TONFIgs.Tclose)

(“ Receive Wait Time Monitoring Timer Execution Flag (Tr_TON))

((Next Message Wait Time) : Local_TONFlgs.Tr)

Local_TONflgs.Tfs:=FALSE;
Local_TOMNflgs.Tfr=FALSE;
Local_TONflgs.Topen:=FALSE:
Local_TONflgs.Tclose:=FALSE:
Local_TOMflgs.Tr:=FALSE;

(* 2.5. Error Code Storage Area Initialization *)
Local_ErrCode.WordData:=WORD#16#0000;
Qutput_ErrCode:=WORD#16%#FFFF;
Output_MErrCode:=DWORD#16#FFFFFFFF;
Qutput_SktCmdsErrorlD:=WORD#16#FFFF;
Output SkTcloseErrorlD:=WORD#16#FFFF:

39

(* 2.6. Processing Monitoring Time Setting and Ethernet-related Parameter Setting *)
ETN_ParameterSet_instance(
Execute:=TRUE});

(* 2.7. Send/Receive Processing Required Setting and Send Data Setting *)
ETN_SendMessageSet_instance(
Execute:=TRUE);
(* Send/Receive Processing Required Setting Error Judgment *)
(* <Variable Notes>
> Local_ComType.Send: Send Processing Required Flag
> Local_ComType.Recw: Receive Processing Required Flag
> Local_ComType.Error: Send/Receive Processing Required Setting Error *)
Local_ComType.5end:=TestABit(ETN_SendMessageSet_instance.ComType,0):
Local_ComType.Recv:=TestABit(ETN_SendMessageSet_instance.ComType, 1);
Local_ComType.Error=MNOT(Local_ComType.Send OR Local_ComType.Recv);
IF Local_ComType.Error THEN
Output_ErrCode:=WORD#16#0020;
Local_InitialSettingOK:=FALSE;
ELSE
Local_InitialSettingOK:=TRUE:
END_IF;

(* 2.8. Send Data Conwversion from String to Byte Array *)
Local_SrcDataByte:=
StringToAry(ETN_SendMessageSet_instance.Send_Data,Local_SrcData[0])

(* 2.9. Receive Data Storage Area Initialization *)
Clear5tring(Local_ReceiveMessage);
Clear5tring(Output_RecvMess);
Local_RecvCHNo:=0;

Local_RecvDatalength:=0;
Local_ReceiveSize:=UINT#256;

(* 2.10. Initialization End Processing *)
IF Local_InitialSettingOK THEN

Local_State:=11; // Go to 11: Open Processing.
ELSE

Local_Status.Busy:=FALSE:

Local_Status.Erron=TRUE;

Local_State:=0; /{ Go to 0: Communications Not Executed State.
END_IF;

9. Project File

40

9. Project File

3. Open Processing

11: (f == %)
(* 3. Open Processing)
(* » Connects to remote TCP port by active open. *)

(* «Variable Notes>
> Local_ExecFlgs.Open: Open Instruction Execution Flag
> Local TONFIgs.Topen Open Processing Time Monitoring Timer Execution Flag *)

(* 3.1. Open Processing Status Judgment and Execution Flag Setting *)

(* 3.1.1. Timeout Processing *)

IF Topen_TOM_instance.Q THEN
Local_ErrCode.BoolData[10]:=TRUE
Output_SktCmdsErrorlD:=WORD#16#FFFF:
Local_ExecFlgs.Open:=FALSE:

Local_TONflgs.Topen:=FALSE:
Local State:=14; // Go to 14: Close Processing.

(* 3.1.2. Normal End Processing *)
ELSIF SktTCPConnect_instance.Done THEN
Local_ErrCode.BoolData[2]:= FALSE
Output_SktCmdsErrorl D:=WORD#16#0000;
Local_ExecFlgs.Open:=FALSE;
Local_TONflgs.Topen:=FALSE:
(* <Variable Motes:>
> Local_ComType.Send: Send Processing Reqguired Flag
> Local ComType.Recv: Receive Processing Required Flag *)
|F Lecal_ComType.5end THEN

Local_State:=12; // Go to 12: Send Processing.
ELSIF Local_ComType.Recv THEN

Local_State:=13: /{ Go to 13: Receive Processing.
END_IF;

(* 3.1.3. Error End Processing *)

ELSIF 5ktTCPConnect_instance.Error THEMN
Local_ErrCode.BoolData[2]:=TRUE:
Output_SktCmdsErrorlD:=5kiTCPConnect_instance.ErroriD;
Local_ExecFlgs.Open:=FALSE;

Local_TONflgs.Topen:=FALSE;
Local_State:=14; /{ Go to 14: Close Processing.

(* 3.1.4. Open Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Open:=TRUE;

Local_TONflgs.Topen:=TRUE:
END_IF;

(* 3.2. Open Processing Monitoring Timer Execution *)
Topen_TON_instance(
In:=Local_TONflgs.Topen,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance. TopenTime));

(* 3.3. Open Instruction Execution (TCP.Active Open Processing)
Executes Open instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON).)
SktTCPConnect_instance(
Execute:=Local_ExecFlgs.Open AND _EIP_EtnCnling5ta,
SrcTepPort:=ETMN_ParameterSet_instance.SrcPort,
DstTcpPort:=ETM_ParameterSet_instance.DstPort,
DstAdr=ETN_ParameterSet_instance.DstIPAddr);

41

4. Send Processing

(* 4. Send Processing *)
(* + Sends data from specified TCP port.
(f ==
(* <Variable Notes:>
> Local_ExecFlgs.Send: Send Instruction Execution Flag
> Local_TOMFIgs.Tfs: 5end Processing Time Meonitoring Timer Execution Flag *)

(* 4.1, Send Processing Status Judgment and Execution Flag Setting *)

(* 4.1.1. Timeout Processing *)

IF Tfs_TON_instance.Q THEN
Local_ErrCode.BoolData[8]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Send:=FALSE;
Local_TOMflgs.Tfs:=FALSE;
Local_State:=14; // Go to 14: Close Processing.

(* 4.1.2. Normal End Processing *)
ELSIF SKtTCPSend_instance.Done THEM
Local_ErrCode.BoolData[0]:=FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Send:=FALSE;
Local_TONflgs. Tfs:=FALSE;
(* <Variable Notes=>
> Local_ComType.Recv: Receive Processing Required Flag *)
Local_State:=SEL(Local_ComType.Recv,14,13); // Go to 13: Receive Processing.
// Go to 14: Close Processing.

(* 4.1.3. Error End Processing *)
ELSIF SktTCPSend_instance.Error THEN
Local_ErrCode.BoolData[0]:=TRUE;
Output_SktCmdsErrorlD:=
SktTCPSend_instance.ErrorlD;
Local_ExecFlgs.Send:=FALSE;
Local_TOMflgs.Tfs:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 4.1.4. Send Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Send:=TRUE:

Local_TOMflgs. Tfs:=TRUE;
END_IF;

(* 4.2. Send Processing Time Monitoring Timer Execution *)
Tfs_TOM_instance(

In:=Local_TONflgs.Tfs,

ET:=MULTIME(TIME#10ms, ETN_ParameterSet_instance. TfsTime));

(* 4.3. Send Instruction Execution

Executes Send instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktTCPSend_instance(

Execute:=Local_ExecFlgs.5end AND _EIP_EtnOnline5ta,

Size:=Local_SrcDataByte,

Socket:=SktTCPConnect_instance.Socket,

SendDat:=Local_SrcData[0]);

9. Project File

42

9. Project File

5. Receive Processing

13 (* ===========================z===============================z======== ¥
(* 5. Receive Processing *)
(* + Reads receive buffer data from specified TCP socket. *)
(f== ¥

(* «Variable Notes>
= Local _ExecFlgs.Recv: Receive Instruction Execution Flag
> Local_ExecFlgs.Status: Get TCP Status Instruction Execution Flag
> Local_TONFIgs.Tfr: Receive Processing Time Monitoring Timer Execution Flag
> Local_TOMFIgs.Tr: Receive Wait Time Monitoring Timer Execution Flag
(Mext Message Wait Time) *)

(* 5.1. Receive Processing Status Judgment and Execution Flag Setting ™)

(* 5.1.1. End of Receive Processing *)
IF Tr_TON_instance.Q THEN
Local_ExecFlgs.Status:=FALSE;
Local_TONflgs. Tfr:=FALSE:
Local_TONflgs.Tr:=FALSE:

(* Receive Data Conversion from Byte Array to String *)
Local_ReceiveMessage:=
AryToString(Local_RecvData[0].Local_RecvDatalength):

(* Code Reader Error Judgment Instruction Execution Flag Setting *)
Local_RecvCheckFlg:=TRUE

Local_State:=14; // Go to 14: Close Processing.

(* 5.1.2. Timeout Processing *)

ELSIF Tfr_TON_instance.Q THEN
Local_ErrCode.BoolData[9]:=TRUE;
Output_SktCmdsErrorlD:=\WORD#16#FFFF:
Local_ExecFlgs.Recv:=FALSE;

Local_ExecFlgs.Status:=FALSE:
Local_TONflgs.Tfr:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 5.1.3. Normal End Processing ’}|
ELSIF SktTCPRecv_instance.Done THEN
Local_RecvDatalength
:=Local_RecvDatalength+5SktTCPRev_instance.RevSize;
Local_RecvCHMNo:=Local_RecvDatalength:

Local_ExecFlgs.Recv:=FALSE:
Local_TOMNflgs.Tfr:=FALSE:
Local_TOMNflgs.Tr-=TRUE: // Go to 5.1.5. Receive Data Read Processing.

(* 5.1.4, Error End Processing *)
ELSIF SktTCPRecv_instance.Error THEN;
Local_ErrCode.BoolData[1]:=TRUE:
Qutput_SktCmdsErroriD:=
SKiTCPRev_instance.Errorl D;

Local_ExecFlgs.Recv:=FALSE:
Local_TONflgs.Tfr=FALSE:

Local_State:=14; /{ Go to 14: Close Processing.

(* 5.1.5. Receive Data Read Processing *)
ELSIF SktGetTCPStatus_instance.Done
OR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE:

(* If there is data to read: Continues receive processing. *)
|F SkiGetTCPStatus_instance.DatRevFlag THEN
Local ExecFlgs.Recv:=TRUE;
Local_TOMNflgs.Tfr=TRUE:
Local_TONflgs.Tr:=FALSE;
END_IF;
(* If there is no data to read:
« If no data is received, processes nothing and
executes Get TCP Status again in next cycle.
« If data is already received, monitors response wait time and.
if timeout occurs without next response,
reads already received data to end receive processing.

b

43

(* 5.1.6. Get TCP Status Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Status:=TRUE;

Local_TONflgs.Tfr:=TRUE:

(* Code Reader Error Judgment Instruction Execution Flag Initialization *)
Local_RecvCheckFlg:=FALSE:
END_IF:

(* 5.2. Receive Wait Time Monitoring Timer Execution (Next Response Wait Time) *)
Tr_TOM_instance(
In:=Local_TONflgs.Tr,
PT:=MULTIME(TIME#100ms,ETN_ParameterSet_instance.TrTime));

(* 5.3. Receive Processing Time Monitoring Timer Execution *)
Tfr_TOMN_instance(
In:=Local_TONflgs.Tfr,
PT:=MULTIME(TIME#10ms.ETN_ParameterSet_instance.TfrTime));

(* 5.4. Receive Instruction Execution
Executes Receive instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktTCPRev_instance(
Execute:=Local_ExecFlgs.Recv AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.Socket,
TimeDut:=ETN_ParameterSet_instance.TrTime,
Size:=Local_ReceiveSize,
RevDat:=Local_RecvData[local_RecwCHNa]):

(* 5.5. Get TCP Status Instruction Execution
Executes Get TCP Status instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

(* 5.6. Code Reader Error Judgment Instruction Execution *)

ETN_ReceiveCheck_instance(
Execute:=Local_RecvCheckFlg,

ocal_ReceiveMessage,

tlength:=Local_RecvDatalength,
ErrorlD:=Local_ErrCode.WordData,
ErrorlDEx:=0utput_MErrCode);

9. Project File

44

9. Project File

6. Close Processing

14: (f == ¥
(* 6. Close Processing *)
(* = Closes specified socket)

(* «Variable Notes>
= Local_ExecFlgs.Close: Close Instruction Execution Flag
> Local_ExecFlgs.Staus: Get TCP Status Instruction Execution Flag
> Local_TONFlgs.Tclose: Close Processing Time Monitoring Timer Execution Flag *)

(* 6.1. Close Processing Status Judgment and Execution Flag Setting *)

(* 6.1.1. Timeout Processing *)

IF Tclose_TOM_instance.Q THEN
Local_ErrCode.BoolData[11]:=TRUE;
Output_SkTcloseErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs.Tclose:=FALSE;
Local_ExecFlgs.Status:=FALSE;
Output_EtnTcpSta:=5ktGetTCPStatus_instance. TepStatus:
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WordData;
Local_Status.Busy:=FALSE:
Local_Status.Error=TRUE;

Local_State:=0; /{ Go to 0: Communications Mot Executed 5tate.

(* 6.1.2. Normal End Processing *)
ELSIF SkTclose_instance.Done THEN
Local_ExecFlgs.Status:=TRUE;
IF SktGetTCPStatus_instance.Done
OR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE;

IF SktGetTCPStatus_instance. TepStatus = _CLOSED THEN
Local_TOMflgs.Tclose:=FALSE:
Output_SkTcloseErrorlD:=WORD#16%0000;
Output_EtnTepSta:=SktGetTCPStatus_instance. TepStatus;
Local_ExecFlgs.Close:=FALSE:

(* Processing Result Judgment for Overall Communications Processing *)
Local_Status.Busy:=FALSE:

(* Normal End of Communications Processing *)

IF Local_ErrCodeWordData = WORD#16#0000 THEM
Local_Status.Done:=TRUE;
Local_ErrCode.BoolData[15]:=FALSE;

(* Error End of Communications Processing *)
ELSE

Local_Status.Error:=TRUE;

Local_ErrCode.BoolData[15]:=TRUE;
END_IF;
Output_ErrCode:=Local_ErrCode.WordData;

Local_State:=0; // Go to 0: Communications Not Executed State.

END_IF;
END_IF;

{* 6.1.3. Error End Processing *)

ELSIF SkTclose_instance.Error THEN
Local_ErrCode.BoolData[3]:=TRUE;
Output_SkTcloseErrorlD:=SkTclose_instance.ErrorlD;
Local_ExecFlgs.Close:=FALSE:
Local_TONflgs.Tclose:=FALSE;
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WordData;
Local_Status.Busy:=FALSE;
Local_Status.Erron=TRUE;

Local_State:=0; // Go to 0: Communications Not Executed State.

(* 6.1.4. Close Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Close:=TRUE;

Local_TONflgs. Tclose:=TRUE;

END_IF;

45

9. Project File

(* 6.2. Close Processing Time Monitoring Timer Execution *)

Tclose TOMN_instance(
In:= Local_TONflgs.Tclose,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance.TcloseTime));

(* 6.3. Close Instruction Execution
Executes Close instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SkTclose_instance(
Execute:=Local_ExecFlgs.Close AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

(* 6.4. Get TCP Status Instruction Execution
Executes Get TCP Status instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

7. Processing No. Error Processing
99: (* == ¥
(* 7. Processing Mo. Error Processing ")
(* » Error processing when non-existent state processing number is set *)

Output_ErrCode:=WORD#16#0010;
Local_Status.Busy:=FALSE:
Local_Status.Error:=TRUE;

Local_State:=0; /{ Go to 0: Communications Not Executed State.
ELSE
Local_State:=99; // Go to 99: Processing Mo. Error Processing.
END_CASE
END_IF;

46

9. Project File

9.4.3. Detailed Explanation of Function Blocks
This project file uses the following function blocks.
In the printout of function blocks given below, data that is variable depending on the code
reader is shown in red frames.

e Details of the ETN_ParameterSet_instance Function Block (ParameterSet)

Instruction Name FB/FUN Graphl_c ST expression
expression
Ethernet ETN_ParameterSet_instance
L (Execute, TfsTime, TrTime, TfrTime, ,
ParameterSet | Communications FB None) ' S
Parameter Settings TopenTime, TcloseTime, SrcPort,
DstIPAddr, DstPort);
* In-out Variable Table
* Input
Vel Data type Name Description Valid range | Unit i1
name value
Executes the function block
Execute BOOL Execute when the value changes from cI:J)r(1e [c)j(;?ad ° - ---
OFF (FALSE) to ON (TRUE). tvoe
(Always TRUE) ype.
* Output
Ve Data type Name Description Valid range | Unit it
name yp P 9 value
Open Sets the monitoring time for Depends
TopenTime | UINT Monitoring open processing in on data - -
Time increments of 10 ms. type.
Send Sets the monitoring time for Depends
TfsTime UINT Monitoring send processing in on data -—- -—-
Time increments of 10 ms. type.
@Z?telve Sets the arrival standby time Depends
TrTime UINT L for receive data in increments | on data - -
Monitoring
Ti of 100 ms. type.
ime
Receive Sets the monitoring time for Depends
TfrTime UINT Processing receive processing in on data -—- -—-
Time increments of 10 ms. type.
Close Sets the monitoring time for Depends
TcloseTime | UINT Monitoring close processing in on data - -
Time increments of 10 ms. type.
Depends
SrcPort UINT ﬁgurce Port Sets the local port. on data - -
) type.
STRING | Destination Depends
DstIPAddr Sets the remote IP address. on code - -
[256] IP Address
reader.
Depends
DstPort UINT Destination Sets the remote port number. | on code - -
Port No.
reader.
Busy BOOL Busy
Done BOOL Normal End
Error BOOL Error End Not used
ErrorlD WORD Error . (Not used in this project.)
Information
ErrorlDEx | DWORD | EMOr
Information

 Internal Variable Table: None
47

* Program
¥ == %)
(* Name: NJ series Ethernet communication parameter setting function block *)
(* Function: Each processing monitoring time setting and Ethernet related parameter setting *)
* |
(* Target device: *
(* Manufacturer name: Omron Corporation *)
(* Device name: Code reader *)
(* Series/Type: V430-F Series)
(* Remarks *)
*]
(* Version information: V1.00 Created November 30, 2018 *)
* ")
(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. *)

==

(* Variable Description: Argument Return Value

()

(Arguments: name data type content)

(Input : Execute BOOL start flag)

()

(-Qutput : TopenTime UINT Open processing monitoring time)
{ TfsTime UINT Transmission processing monitoring time)
4 TrTime UINT Receive wait processing monitoring time)
(TfrTime UINT Receive processing monitoring time)

(TcloseTime UINT Close process monitoring time)

{ SrcPort UINT own PortNo)

(DstiPAddr UINT Destination device IP address)

{ DstPort UINT Destination device PortNo)

{ Busy BOOL unused)

{ Done BOOL unused]

(Error BOOL unused)

(ErrorlD WORD unused)

{ ErrorlDEx DWORD unused)

()

(-Input/output: none)

()

(return value: none)

(

(

IF Execute THEM

(* Ethernet related parameter setting *)

SrcPort:= UINT#0; // own port number

DstlPAddr= "192.168.188.2"; // Destination IP address
DstPort:= UINT#2001; // Destination port number

(* Processing monitoring time setting: maximum time from start to end of processing ¥)

TopenTime := UINT#500; // Open processing monitoring time setting: setting unit 10ms <500 = 5s>
TfsTime:= UINT#500; // Transmission processing monitoring time setting: setting unit 10ms <500 = 55>
TfrTime:= UINT#500; // Receive processing monitoring time: setting unit 10ms <500 = 5s>
TcloseTime:=UINT#500: // Close processing monitoring time: setting unit 10ms <500= 55>

(* The maximum waiting time between packets when the response is divided and received in multiple packets (receive command)
and the maximum waiting time for the next response (receiving waiting time monitor timer) *)
TrTime:= UINT#3; //Receiving wait monitoring time: setting unit 100ms<3 = 300ms>
END_IF;

RETURN:

48

e Details of the ETN_SendMessageSet_instance Function Block (SendMessageSet)

9. Project File

. Graphic .
Instruction Name FB/FUN expression ST expression
SendMessage Ethernet. . ETN_SendMessageSet_instance
Communications FB None .
Set . (Execute, Send_Data, ComType);
Sequence Setting
* In-out Variable Table
* Input
Variable o . . Initial
name Data type Name Description Valid range | Unit value
Executes the function block
Execute BOOL Execute when the value changes from cl?ne Fc)ieaT: ° - ---
OFF (FALSE) to ON (TRUE). tvoe
(Always TRUE) ype.
* Output
venEz Data type Name Description Valid range | Unit itial
name value
Depends
STRING Sets the send command | on data
Send_Data [256] Send Data to the code reader. type. - -
Sets whether to execute
send, receive, or send
ComType BYTE Communication a.nd receive processing. | 4, 4 . .
Type 1: Send only,
2: Receive only,
3: Send and receive
Busy BOOL Busy
Done BOOL Normal End Not used
Error BOOL Error End (Not used in this - - -
ErrorlD WORD Error Information | Project.)
ErrorlDEx DWORD | Error Information
* Internal Variable Table
Variable name Data type Name Description Valid range | Unit \I/r;ltbael
Depends
Send_Header | STRING[5] | oond Send message on data
Header header
type.
Code Code reader Depends
Send_Addr STRING[5] Reader on data - -
address
Address type.
Send command to Depends
Send_Command | STRING[256] | Send Data on data -—- -—-
the code reader type
Send Send message Depends
Send_Check STRING[5] Check on data -—- -—-
check code
Code type.
Depends
Send_Terminate | STRINGI5] Send. Senq message on data - -
Terminator | terminator type

49

(* Name: NJ-series general-purpose Ethernet communication transmission/reception sequence setting function block)
(* Function: Necessity of sending/receiving processing and sending data setting *)

(* Wl

(* Target device: *)

(* Manufacturer name: Omron Corporation *

(* Device name: Code reader)

(* Series/Type: VA30-F Series)

(* Remarks H =)

o)

(* Version information: V1.00 Created November 30, 2018]

o ")

(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. *}
(*== %)
(* Variable Description: Argument Return Value ==)
()

(Arguments: name data type content)

(-Input : Execute BOOL start flag)

()

(-Output : SendData STRING[256] Send data)]

(ComType BYTE transmission/reception processing necessity setting)

(Busy BOOL unused)

(Done BOOL unused)

(Error BOOL unused)

(ErrorlD WORD unused 3

(ErrorlDEx DWORD unused)

()

(*Input/output: none)]

()

(return value: none)

()

[== ¥

IF Execute THEN

(* Necessity setting for sending/receiving processing *)
ComType:= BYTE#16#03; // 1: send only. 2: receive only, 3: both send/receive

(* Transmission data setting *)
Send_Header="; /f header
Send_Addr="; // address
Send_Command:= "< ='; // Destination device command: read execution
Send_Check:="; £/ SUM calculation
Send_Terminate:= "; /f Terminator

(* concatenation of transmission data *)
Send_Data:=
COMNCAT(Send_Header,Send_Addr,5end_Command,Send_Check,5end_Terminate);
END_IF:

RETURN;

50

9. Project File

e Details of the ETN_ReceiveCheck_instance Function Block (ReceiveCheck)

. Graphic .
Instruction Name FB/FUN expression ST expression
Ethernet ETN_ReceiveCheck_instance
. Communications (Execute, Recv_Data,
ReceiveCheck Receive FB None Recv_Buff, Error, ErroriD,
Processing ErrorlDEX);
* In-out Variable Table
* Input
Variable _ . . Initial
Data type Name Description Valid range | Unit
name value
Executes the function block Depends
Execute BOOL Execute when the value changes from | on data -—- -
OFF (FALSE) to ON (TRUE). | type.
. . Depends
tLength UINT Receive Byte length of receive buffer on data . -
Data Length | data
type.
* In-out
Variable s . . Initial
Data type Name Description Valid range | Unit
name value
Receive data storage Depends
Recv_Data | STRING[256] Receive Data result 9 on data -—- -—-
type.
Depends
Recv_Buff | STRING[256] Receive Buffer | Receive data buffer on data - -
type.
Error code:
Error Code reader error =
ErrorlD WORD Information #16#1000 o o o
FCS error = #16#2000
Error: code:
Error FCS receive
ErrorlDEx | DWORD Information result/Code reader - - -
error code
* Output
Ve Data type Name Description Valid range | Unit it
name value
Busy BOOL Busy Not used B B B
Done BOOL :;locrjmal (Not used in this project.)
n
Error BOOL Error End | Error end — - —
* Internal Variable Table
Variable name Data type Name Description Valid range | Unit :,Z:Lael
Receive_Check | STRING[5] | Receive FCS receive result of Depends
FCS receive data on data - -
type.
Calc_Check STRING[5] | Receive FCS calculation result of D
. epends
FCS receive data
. on data - -
Calculation tvoe
Value ype.

51

* Program

(* Name: NJ series general-purpose Ethernet communication reception processing function block *)
(* Function: Receive data storage and receive processing result judgment)
* "

(* Target device: *

(* Manufacturer name: Omron Corporation *)

(* Device name: Code reader =)

(* Series/Type: V430-F Series *)

(* Remarks *)

* bl

(* Version information: V1.00 Created November 30, 2018 =)

* Bl

(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. *
*

{* Variable Description: Argument Return Value ==============c==—————————c-——-—————cooo——oo oo)
()

(Arguments: name data type content)

{ -AF:Execute BOOL startflag 3

(tlength UINT Receive data length)]

()

(-#7:Busy BOOL unused)

(Done BOOL unused)

(Error BOOL Error flag)

{)

(- A7 1 Recv_Data STRING[256] Received data storage area)]

(Recv_Buff STRING[256] receive buffer)

(ErrorlD WORD error code)

(ErrorlDEx DWORD FCS reception result or destination device error code)
{)

(return value: none)

(
(

)

IF Execute THEN
(* CheckSUM judgment: Not required *)

(* Store data in receive buffer in receive data storage area *)
Recv_Data:= Recv_Buff;

(* Judgment of partner device error ¥
(* V430 does not return an error response in serial (TCP) communication *)
Error:= FALSE; // Error flag reset
ErroriD:= WORD#16#0000; /{ clear error code
ErrorlDEx;= DWQRD#1� // clear the destination device error code

END_IF;

RETURN;

52

] 9.5. Timing Chart

9. Project File

The timing chart for the ST language program is shown below.

Start and Setup

Input_Start _l

1
Local_Status. }

BoolData[0](Busy) _l
|

Send data !

X Hxkk

Control data j

1
Common
parameters :P< il

|
Receive data
'X 0000

Output_sktCmds
ErrorlD

Local_Status.
BoolData[1](Done)
or Local_Status.
BoolData[2](Error)

j(0000

If Input_Start is changed from True (ON) to False (OFF) during execution, Normal End or Error

End is output for one cycle after processing is completed as shown below.

Input_Start

Local_Status.

BoolData[0](Busy) v
Local_Status. []Ou
BoolData[1](Done) v
- »:_ _:4. -
Local_Status. !
BoolData[1](Error) 1
1
Output_SktCmdErrorlD v
#0000
Output_MErrCode #0000

(1) Normal state

i)

/

B e

(2) Error state

£ f]
I

1
tput for 1 cycle !
1

sl P

Output for 1 cycle 1

'#XXXX
XEXXXXX

53

e Open Processing

9. Project File

Input_Start ;--------m-omommommooos Input_Start r---------memeoooe o
__:- -
SktTCPConnect —l—‘i SktTCPConnect I
_instance.Execute ! | _instance.Execute _I e ——
1 1 I !
Tgpetn_TOg ' ' Topen_TON | !
_instance. : ; _instance.Q — 1
! 1
1 1
SktTCPConnect e SKtTCPConnect | :
_instance.Busy —I"~ M _instance.Busy —!‘\—\"!—17
1/ vy ! 1 / s
SKITCPConnect 1(y--=-=2 J1 1 SKITCPConnect 18, :----5 M1 |
_instance.Busy -_1-_! R _instance.Busy --4--1 L B EERREEEEE
1 1 1 L
SI_(tTCPConnect ' h SktTCPConnect | P
_instance.Done ; I _instance.Done — —
1 1 1
Sk_tT?PCorIlEnect ! ' SkiTCPConnect | T—'
_instance.Error : : _instance.Error ' I
1 1
1 1
SktTCPConnect . SkiTCPConnect — '
_instance.ErrorlD _w(_0000 ! _instance.ErrorlD J 0000 X+
1
Local_ErrCode.b{2] | Local_ErrCode.b[2] I
Open processing error : Open processing error :
1
Output_sktCmds : Output_SktCmds :
ErrorlD 0000 ! P oo 0000 X o
SktTCPSend ? """""" SktClose i ___________
_instance.Busy - __________. ! _instance.Busy - ____________. j
(Normal End) (Error End)

Input_Start
SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

—1_

SktTCPConnect ;
_instance.Busy

I
[}
1
:
1 I
SktTCPConnect 1 '
_instance.Busy Stopped - _.: ________ L
1

1
SKITCPConnect ! |
instance.Done —— L ________
_ | : v
SktTCPConnect | !

_instance.Error — 1 _____
1
SktTCPConnect

1
_instance.ErrorID _3(0000

Local_ErrCode.b[10]
Timeout

I

Output_ErrCode :
0000

1

SktClose
_instance.Busy - - ____ L

(Timeout)

54

e Send Processing

SktTCPConnect
_instance.Done

SktTCPSend
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy
SktTCPSend
_instance.Done

SktTCPSend
_instance.Error

SktTCPSend
_instance.ErrorlD

Local_ErrCode.b[8]
Timeout

Output_sktCmds
ErroriD

SktTCPRcv
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPSend
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Busy

SktTCPSend
_instance.Done

SktTCPSend
_instance.Error

SktTCPSend
_instance.ErrorlD

Local_ErrCode.b[8]
Timeout

Output_ErrCode

SktClose
_instance.Busy

r=

1
!r ______________________

I e I

;

<_________

X_0000

0000

(Normal End)

_l'. _______________________

1
1
1
B T TP
1
1
1

1
—_ -

! 1
A 4 1

— X ooo0 !

0000 X

(Timeout)

SktTCPConnect

_instance.Done -1

SktTCPSend
_instance.Execute

Tfs_TON
_instance.Q

SktTCPSend
_instance.Busy
SktTCPSend
_instance.Done

SktTCPSend
_instance.Error

SktTCPSend
_instance.ErrorID

Local_ErrCode.b[8]
Timeout

Output_sktCmds
ErrorlD

SktClose
_instance.Busy

e
L]

9. Project File

|

|

4.____

_J

j 0000 X *

*
*

RN . R

(Error End)

55

e Receive Processing

SktTCPSend

r=y

. 1
_instance.Done -t ¢

SktGetTCPStatus |

_instance.DatRcvFlI

SkiTCPRcv |

_instance.Execute

Tfr_TON_instance.Q
Tr_TON_instance.Q

SktTCPRcv
_instance.Busy

SktTCPRcv

_instance.Busy - -.--

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorID

Local_ErrCode.b[9]
Timeout

Output_sktCmds
ErrorlD

SktTCPSend

_instance.Done -t

SktGetTCPStatus
_instance.DatRcvFI|

SktTCPRcv
_instance.Execute

Tfr_TON_instance.Q
Tr_TON_instance.Q

SktTCPRcv
_instance.Busy

SktTCPRcv

~
K
1 ,l

e o

-F

-’
’

A

0000 X

4_____

— X 0000

0000

(Repetition)

I e I

I

_instance.Busy - -4--t

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorlD

Local_ErrCode.b[9]
Timeout

Output_sktCmds
ErrorlD

SktClose
_instance.Busy

70000
1

~_ ¥ oooo X

Hkkk

0000

(Error End)

SktTCPSend
_instance.Done

SktGetTCPStatus
_instance.DatRcvFI

SktTCPRcv
_instance.Execute

Tr_TON_instance.Q

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorID

Local_ErrCode.b[9]
Timeout

Output_sktCmds
ErrorlD

SktClose
_instance.Busy

9. Project File

i [

TI Receive standby time

Hekkk

0000

0000

0000

(Normal End)

SktTCPSend]
_instance.DoNne -+ oo oo
[}

SktGetTCPStatus _l—\—
_instance.DatRcvFlag
1
SK{TCPRev |
_instance.Execute _I—\—
Tfr_TON
_instance.Q

1
SktTCPRcv REREEEEER
_instance.Busy _I i !
SktTCPRcv
_instance.Busy Stopped - -

]

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Done

e T s el

‘

R T
o
o
o
o

SktTCPRcv . il
_instance.Error — 1 ______ Jou___.

1
SktTCPRcv !
_instance.ErrorID :X*OOOO

[}

1

i

[}

Local_ErrCode.b[9]

[
1

X

Timeout

Output_sktCmds)
ErrorlD 0000

1
SktClose Y
_instance.Busy - -----_____ '

(Timeout: Receive error)

SktTCPSend
_instance.Done __________________________

SktGetTCPStatus
_instance.DatRcvFI —‘—

SktTCPRcv
instance.Execute || @

Tfr_TON_instance.Q
Tr_TON_instance.Q

[}

|

1 . .
SKITCPRev vReceive standby time

_instance.Busy

SktTCPRcv
_instance.Busy - - - _____

. *kkk
_instance.RcvDat

SktTCPRcv
_instance.Done

1
|
[
1
SktTCPRcv :
1
1
1
1
1
1
1

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorID

Local_ErrCode.b[12]
Code reader error

Output_MErrCode

SktClose Y.
_instance.Busy - - - _____ .

(Code reader error)

SktTCPSend
_instance.Done

SktGetTCPStatus
_instance.DatRcvFlag

SktTCPRcv
_instance.Execute

Tfr_TON_instance.Q
SktTCPRcv
_instance.Busy

SktTCPRcv

_instance.Busy Stopped

SktTCPRcv
_instance.RcvDat

SktTCPRcv
_instance.Done

SktTCPRcv

SktTCPRcv
_instance.ErrorlD

Local_ErrCode.b[9]
Timeout

Output_sktCmds
ErrorlD

SktClose
_instance.Busy

9. Project File

| r———1
[JR——
1 ! 1
1 ! 1
P VU R | I,
1 ! 1
1 ! 1
foooo | i
1 T [
1 ! 1
1 ! 1
1 ! 1
—_ - PR
1 1
1 ! ~1
1 ! [
S [J o
1 1
| 1
“X¥0000 |
]
1
|
1
0000 X FFFF
1
\4

(Timeout: No receive data)

57

9. Project File

e Close Processing

SktTCPRcv £
_instance.Done, etc. _i [ommmmmmmmm e

SktClose |
_instance.Execute _I—‘i

Tclose_ TON |
_instance.Q :

SktClose ﬁ |
_instance.Busy t

SktTCPRcv]
_instance.Done, etc. -

SktClose _l—\—
_instance.Execute

1
N
[N Tclose_TON |
SktClose |" ___ 'y 1 _instance.Q —t
instance.Busy Stopped |*J' r ; !
--q- L
SktClose 1 T—l . SktClose m
_instance.Done : I _instance.Busy Iy Oy
1 1/ !
~ SkiClose 1 I SktClose f,-----1 »)
—instance. Error V . _instance.Busy Stopped --4-1 e e
SktClose '
_instance.ErrorID:X 0000 ! SktClose
[

1 1
1 1
] 1
SkiGetTCPStatus ; i
_instance.Execute _wi SkiClose : !
SktGetTCPStatus ,T_l ! _instance.Error 1 M
_instance.Busy \ +. ! .
A 4 SktClose .
SktGetTCPStatus A kk
instance.Done ﬂ _instance.ErrorlD 3(0000 X'
- : y 1
i 1
SktGetTCPStatus Local_ErrCode.b[3]
_instance.TcpSta XXX X _ECLOSED Close processing error E
Local_ErrCode.b[3] | Local_ErrCode.b[11] |
Close processing error : Timeout !
Local_ErrCode.b[11] | |
Timeout : Output_skTclose 0000 :X
Output_skTclose L ErrorlD {
ErrorlD 0000 ! v
Output Statb(0] ¥ Output_Statb[0] ~--=-=----1 '
pu St L (Busy) el
(Normal End) (Error End)
SktTCPRecv r-4
FB_Rcv.Done, etc. P _instance.Done, etc. -t oo ocoooooomooooooo
-1 === =-mmmmmmm e 1
1 SktClose J—‘—
SktClose —l—\— _instance.Execute
_instance.Execute !
\ T(;Iose_TON : |—|
Tclose_TON | M —instance.Q —L i
B 1
_instance.Q : : SkiClose | :
SktClose ! _instance.Busy _,“)—("_.7

_instance.Busy

_instance.Done

SktClose

1
17
J

N -

[

1
1 ! I ______ ‘:' hii]
! . instance.Busy - - 1- [S
SktClose 1 ' ' - Yoo i
instance.Busy Stopped - - 4--—---_ Lomoeeo R SktClose ! i
I ' ' _instance.Done d
SktClose : | \ ! h
_instance.Done ——— L ________ [I SkiClose |_|
1 : ; _instance.Error L)
SitClose | v SkiClose — :
—instance.Error _f—: """"" e _instance.ErrorlD j(0000 |
1 1
SktClose —i 1]
. 1 SktGetTCPStatus
_instance.ErrorlD _« 0000 | " instance TcpSta XXX Xi # CLOSED
Local_ErrCode.b[3] ' Local_ErrCode.b[3] i_l
Close processing error : Close processing error]
I 1
Local_ErrCode.b[11] l—l Local_ErrCode.b[11] !
Timeout ! Timeout :
1 1
Output ErrCode I Output_skTclose
pul- 0000 % 0800 ErrorlD 0000 EX FFFF
v Output_Statb[0] ----------Y

Output_Stat.b[0]
(Busy)

(Timeout)

(Busy)

(Status Error)

I 9.6. Error Processing

9. Project File

9.6.1. Error Code List

This section lists error codes that can occur during the execution of the ST language program.

e TCP Connection Status Error (Output _EtnTcpSta)
If the TCP connection status does not return to the normal state (_ CLOSED) within the
specified time after close processing, the TCP connection status code is set in the variable

Output_EtnTcpSta. (If close processing ends with an error, the variable is checked

together.)

Error code enumerator
[eCONNECTION_STATE]

Description

CLOSED Connection closed (Normal state)
LISTEN Waiting for a connection
SYN SENT SYN sent in an active state

_SYN RECEIVED

SYN sent and received

_ESTABLISHED

Connection established

CLOSE WAIT Waiting for a finish after FIN received
_FIN WAIT1 Finished and FIN sent
_CLOSING Finished and FIN exchanged Waiting for FIN acknowledgment (ACK)
_LAST ACK FIN received and finished Waiting for FIN acknowledgment (ACK)
_FIN WAIT2 FIN acknowledgment (ACK) received Waiting for FIN
_TIME WAIT Waiting for a silence of twice the maximum segment lifetime (2 MSL)

after a finish

59

=\

9. Project File

e Error Codes (Output_SktCmdsErrorID, Output_SkTcloseErroriD)

If an error occurs in open processing, send processing, or receive processing, the error
code is set in the variable Output_SktCmdsErrorlD before execution of close processing.
If an error occurs in close processing, the error code is set in the variable
Output_SkTcloseErrorID and the processing ends. The table below shows the main error
codes.

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing (SktClose

instruction), o: Applicable processing)

Errorcode | O | S | R | C | Description

#16#0000 o o | o o | Normal end

#16#0400 ° ° o | - An .|nput par.ameter for an instruction exceeded the valid range for
an input variable.

The calculation result of the instruction exceeded the valid range

#16#0407 | -—- | o | o | -

for the data area for output parameters.
#16#2000 o | - | = | -~ | The instruction was executed with a local IP address setting error.
#16#2002 N I R The instruction failed to resolve the address of the remote node

with the specified domain name.
The instruction was not executed in appropriate state.
+ SktTCPConnect instruction
The TCP port specified by the input variable SrcTepPort is
already open.
The remote node specified by the input variable DstAdr does not
exist.
The remote node specified by the input variables DstAdr and
DstTepPort is not waiting for a connect request.
» SkiTCPRecyv instruction
The specified socket is in receive processing.
A connection is not established for the specified socket.
» SktTCPSend instruction
The specified socket in send processing.
A connection is not established for the specified socket.

#16#2003 | o | o | o | -

#16#2006 | --- | --- | o | --- | Atimeout occurred for the socket service instruction.

#16#2007 | —- | o | o o | The handle specified in the socket service instruction is invalid.
The instruction was executed in excess of the resources available

#16#2008 o o o o

for simultaneously executable socket service instructions.
#16#FFFF | o o | o o | The instruction ended before completion of the execution.

Note

For details, refer to A-1 Error Codes That You Can Check with ErrorlD and A-2 Error Codes in
Appendices of the Machine Automation Controller NJ/NX-series Instructions Reference
Manual (Cat. No. W502).

Note

For the details and corrections of the built-in EtherNet/IP port, refer to 8-7 Precautions in
Using Socket Services in Section 8 Socket Service of the Machine Automation Controller
NJ/NX-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506).

60

9. Project File

e Error Flags (Error End, Timeout) (Output_ErrCode)
If open, send, receive, or close processing ends with an error or times out, an error flag is
set in the variable Output_ErrCode, and an error code is stored in the variable
Output_SktCmdsErrorID or Output _SkTcloseErrorID.
(If close processing ends with error or times out, the TCP connection status error variable
Output_EtnTcpSta is also checked together.)

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing (SktClose
instruction), o: Applicable processing)

Error flag (0] S R C | Description

#16#0000 o o o o Normal end

#16#0001 o Send processing ended with an error

#16#0002 o Receive processing ended with an error

#16#0004 o Open processing ended with an error

#16#0008 o Close processing ended with an error

#16#0100 o Send processing not completed within specified time

#16#0200 Receive processing not completed within specified time

o (This includes cases where response to be received was

not received.)

#16#0400 o Open processing not completed within specified time

#16#0800 o Close processing not completed within specified time

#16#0010 Processing number error

#16#0020 Send/Receive required judgment error

#16#1000 Code reader error

#16#2000 Code reader FCS (checksum) error

#16#8000 o o o o Error occurred

* Each error flag stores the sum of error flag values detected in each processing.

e Code Reader Error Codes
If the receive data from the code reader is error data, an error code is stored in the variable
Output_MErrCode.

Error code Description
#16#00000000 | Normal End
#16#FFFFFFFF | Not executed

61

9. Project File

9.6.2. TCP Connection Status Error Situation and Correction
This section describes the situation and corrections if a TCP connection status error occurs.

e Effect of a TCP Connection Status Error
If, after the occurrence of a TCP connection status error, you execute the project file again
without taking any corrective action or without noticing the error, the following error may
occur: The remote node specified by the input variable DstAdr (Destination Address) or
DstTcpPort (Destination Port) is not waiting for a connect request. (Hereinafter, this error is
referred to as “open processing error”.) This is considered as the effect of the TCP
connection status error at the end of the previous communications processing. Refer to
9.6.1. Error Code List for details of errors that occurred.

e Situation When a TCP Connection Status Error Occurs
Both a TCP connection status error after close processing and an open processing error in
the next communications processing due to the effect of the TCP connection status error
can occur because the close processing has not completed in the code reader. In this
situation, despite that the controller has ended all processing steps (up to close processing)
in the project file, it has not received the close completion notification from the code reader
(i.e., the completion of the close processing in the code reader is not confirmed).

e Correction
Check whether the communications port of the code reader is closed since the close
processing may not be completed in the code reader. As a result, if the communications port
of the code reader is not closed or its state cannot be confirmed, the communications port
must be reset. To reset the communications port of the code reader, you can use software
restart or turn OFF and then ON the power supply. For details, refer to the manual for the
code reader.

El Precautions for Correct Use

Reset the communication port of the code reader after confirming that it is not connected to
another device.

e Situation When a TCP Connection Status Error Occurs in the Controller (Built-in EtherNet/IP

Port)
When a TCP connection status error occurs, the project file has ended its processing, but
resending and time monitoring by the built-in EtherNet/IP port (TCP/IP function) may be
active, as described in Resending and Time Monitoring Using the Built-in EtherNet/IP Port
(TCP/IP) in 9.3.2. Time Monitoring Function. However, this resending will stop under the
following situations, so there is no particular need to consciously stop it.

» The project file is executed and an open processing request is issued again.

+ A communications problem such as cable disconnection is resolved during resending.

* Resend processing is ended by the TCP/IP time monitoring (timeout) function.

» The controller is restarted or turned OFF.

62

10. Revision History

10. Revision History

Revision Code Revision Date Revised Page and Reason

01 November 2023 First Publication

63

OMRON Corporation Industrial Automation Company Authorized Distributor:

Kyoto, JAPAN Contact : www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69, 2132 JD Hoofddorp 2895 Greenspoint Parkway, Suite 200

The Netherlands Hoffman Estates, IL 60169 U.S.A.

Tel: (31) 2356-81-300 Fax: (31) 2356-81-388 Tel: (1) 847-843-7900 Fax: (1) 847-843-7787

OMRON ASIA PACIFIC PTE. LTD. OMRON (CHINA) CO., LTD. ©OMRON Corporation 2023 All Rights Reserved.
438B Alexandra Road, #08-01/02 Alexandra Room 2211, Bank of China Tower, In th? 'lnte.rest of prodgct |mprovement,. .
Technopark, Singapore 119968 200 Yin Cheng Zhong Road, specifications are subject to change without notice.
Tel: (65) 6835-3011 Fax: (65) 6835-3011 PuDong New Area, Shanghai, 200120, China

Tel: (86) 21-6023-0333 Fax: (86) 21-5037-2388 Cat. No. Z481-E1-01 1123

	Machine Automation Controller NJ-series General Ethernet (TCP/IP) Connection Guide Industrial Handheld DPM Reader V460-H-series
	1. Related Manuals
	2. Terms and Definitions
	3. Restrictions and Precautions
	4. Overview
	5. Applicable Products and Device Configuration
	5.1. Applicable Products
	5.2. Device Configuration

	6. Ethernet Settings
	6.1. Ethernet Communication Settings
	6.1.1. Communications Settings for Setting PC and Code Reader
	6.1.2. Communication Settings for Ethernet Unit and Code Reader

	6.2. Example of Connection Check for Communications

	7. Connection Procedure
	7.1. Operation Flow
	7.2. Code Reader Setup
	7.2.1. Setting the Parameters

	7.3. Controller Setup
	7.3.1. Starting the Sysmac Studio and Loading the Project File
	7.3.2. Checking Parameters and Executing Builds
	7.3.3. Going Online and Transferring the Project Data

	7.4. Checking the Connection Status
	7.4.1. Executing the Project File and Checking the Receive Data

	8. Initializing the System
	8.1. Initializing the Controller
	8.2. Initializing the Code Reader

	9. Project File
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications Using Socket Service Instructions

	9.2. Error Judgment Processing
	9.2.1. Error Judgment in the Project File
	9.2.2. Time Monitoring Function

	9.3. Variables Used
	9.3.1. Lists of Variables Used
	9.3.2. Lists of Variables Used in User-defined Function Blocks/Functions
	9.3.3. Lists of System-defined Variables

	9.4. Programs (ST Language)
	9.4.1. Functional Components of the ST Language Program
	9.4.2. Detailed Explanation of the Main Program
	9.4.3. Detailed Explanation of Function Blocks

	9.5. Timing Chart
	9.6. Error Processing
	9.6.1. Error Code List
	9.6.2. TCP Connection Status Error Situation and Correction

	10. Revision History
	CONTACT

